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1 Recap

Recall that we have an unknown function (f) that relates the response variable (yi) to the input vector (xi).

Our goal is to find a model (f̂) (i.e. we are approximating f) such that a loss function is minimised. We
may want to use this model for prediction and/or for inference.

We can say we have a training dataset with N i.i.d training datapoints (yi,xi), i = 1, . . . , N , which each
consist of a one dimensional response variable and a p dimensional input vector (yi ∈ R and xi ∈ Rp).

An assumption in linear regression is that the predictor function that we are approximating is linear. We
can then write this relationship as:

yi = f(xi) = β0 +

p∑
j=1

xijβj + εi

Y = f(X) = Xβ + ε

Where X now refers to an N × (p+ 1) dimensional matrix.

For now, let us assume that we know ‘p’ in advance (we will deal with this assumption more under the model
selection topic in this class). We are now able to construct our model :

Ŷ = f̂(X) = Xβ̂

Recall, that there is a portion of variance in the data that can be explained by the model and there is a
portion of the variance in the data that is purely statistical noise and cannot be explained by the model.
Heuristically, we aim to minimise some distance metric between our predictions Ŷ and the true training data
Y .

For linear regression, we make the assumption that the noise (ε) is distributed as a Normal random variable
with mean 0, variance σ2. I.e. ε ∼ N (0, σ2). You can then follow that Y ∼ N (Xβ, σ2). It is therefore common
to denote the linear regression problem as finding the expected value of Y given the input variables X.

E[Y |X] = Xβ̂

More on this topic in upcoming classes.
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2 Matrix Algebra Recap

Please refer to the really useful Matrix Cookbook for a more detailed recap on matrix operations: (http:
// www2. imm. dtu. dk/ pubdb/ views/ edoc_ download. php/ 3274/ pdf/ imm3274. pdf )

We’ll be using the following results (although I highly recommend you download a copy of the cookbook [1]
and keep it handy):

1. (AB)−1 = B−1A−1

2. (AT )−1 = (A−1)T

3. ‖x‖22 = xHx . . . (note that ‘H’ refers to the Hermitian vector (transposed, complex conjugated) and
thus for most of our purposes (i.e. Real domain), the transposed (T) vector is sufficient).

4. ∂
∂x [(b−Ax)T (b−Ax)] = −2AT (b−Ax)

5. The density of x ∼ N (µ,Σ) is p(x) = 1√
det(2πΣ)

exp[− 1
2 (x− µ)TΣ−1(x− µ)]

The above assumes A and B are matrices, x and b are vectors.

3 Minimising the Loss Function

We have a system where the data Y and our model Ŷ (= Xβ̂) differ by some residual amounts. Our goal

is to find the unknown parameters β̂ such that the residuals are minimised. Since we are trying to minimise
the error of the model over all of the datapoints, it makes sense to minimise a sum of all square magnitudes
of errors:

SSE =

N∑
i=0

|residuali|2 =

N∑
i=0

|yi − βxTi |2 = ‖Y −Xβ̂‖22

Choosing to minimise the sum of square errors (SSE):

β̂ = min
β̂

(SSE) = min
β̂
‖Y −Xβ̂‖22 = min

β̂
((Y −Xβ̂)T (Y −Xβ̂))

Finding the gradient and setting it to zero, we can obtain:

∂SSE

∂β̂
= −2XT (Y −Xβ̂) = 0

XTXβ̂ = XTY

β̂ = (XTX)−1XTY
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4 Linear Regression as a Projection

Our predictions Ŷ = Xβ̂ = X(XTX)−1XTY can be condensed into the following equation:

Ŷ = HY

Where H = X(XTX)−1XT . This matrix is often referred to as “the hat matrix as it puts the hat on the y”
[2]. Note that the columns of the X matrix form a subspace of RN that is referred to the column space of X.

Figure 1: Diagram showing the vector y projected onto the subspace spanned by the matrix X in this case
with two linearly independent dimensions[2]

When we minimise the error between the solution Y and the vector projection Ŷ (see Figure 1), the result is
that the error must be orthogonal to the column space (i.e. the solution to the least squares problem is the
orthogonal projection of the vector Y onto the subspace that is spanned by the columns of X). Why is this
useful to know? It is useful to visualise the prediction vector Ŷ as a linear combination of the columns of X
and this Ŷ vector is the ‘closest’ in RN that the prediction can get to the real solution (try to visualise this
in terms of the reducible and irreducible errors discussed in class).

5 Statistical Inference and Hypothesis Testing

Remember that our ultimate goal is to model the linear relationship between various predictors and the
response variable. If our model is ‘good’, not only can we use it to make predictions about future or
unknown events, but we can also use it to make inferences about the underlying structure of the system.
Up until now we have assumed that we knew the true number of predictors and that we knew they had a
linear relationship with the response variable. This is often not the case and therefore in statistical inference,
assumptions of the model have to be validated before any inference is done.

To begin, let us tackle the idea of having a linear relation. Given data (yi,xi), i = 1, . . . , N , we can ask the
question: is there a true linear relationship between the predictor variable x and the response variable y? We
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need to answer this question with statistical evidence. For example, consider the plots below where there are
10 datapoints sampled from four different linear relationships. We need a robust method for analysing which
relations are statistically significant and which are not (as it is clear that in all cases, due to the noise in the
system, there is not one linear function relating the predictor and the response variables). We thus turn to
statistical ‘t-’ (5.2) and ‘F-’ (5.3) tests to make conclusions about the underlying system given the sample of
data we have observed.

Figure 2: Example of a linear function with varying amounts of noise. We need a robust way of determining
if our samples actually have a relationship or if we are just observing noise.

The idea of hypothesis testing is to make some assumptions about the nature of the true system, given the
sample that you are observing, and if those assumptions hold, you can conclude whether or not a certain
null hypothesis is probabilistically reasonable or not.

Examples of assumptions for linear regression include:

• There is a linear relationship between the predictor and response variables.

• The noise is Gaussian (with mean 0) around E[Y |X].

• The noise has a constant variance around the line of regression. We say this is an assumption of
homoskedasticity.

• There is little or no multicollinearity among the predictor variables.

5.1 p-value in Hypothesis Testing

We are making statements about the statistical likelihood of sampling a certain subset of data given the
underlying truth. This is all wrapped into the concept of the p-value which literally translates to the probability
of observing the sampled data or more extreme samples, given the null hypothesis. It is worth noting that,
under the null hypothesis, the p-value follows a uniform distribution (can you connect this to the CDF and
inverse CDF of the given distribution?).

A simple example helps: Imagine that we are sampling data from what we believe is a standard normal
distribution (N (0, 1)). If we have a sample of data ≈ 0 we would agree that our observation coincides with
our null hypothesis that the system is standard normal. However, now imagine that the observation is ≈ 5.
For a standard normal distribution, the probability of observing a sample of 5 (or more) is p = 2.87× 10−7.
That’s a REALLY small probability. So with just one sample, we don’t have too much to say, but getting
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more samples (x) that are |x| >> 0 provides substantial statistical evidence that our null hypothesis (that
the data is sampled from a standard normal distribution) is incorrect.

Therefore, in hypothesis testing, we map the observed data to a specific distribution that would hold under
a null hypothesis. If the observed data is ‘unlikely’ enough given the assumptions and the null hypothesis,
i.e. if the p-value is very small, we say that we reject the null hypothesis and rather accept an alternative
hypothesis.

5.2 t-test

Given data that we believe has a linear relationship mapping the response variables to the predictor, we can
test whether a particular predictor has a relationship with the response variable by testing whether the true
coefficient βj 6= 0 for some j (noting that the observed parameter β̂j is based on a random small sample of
data).

We therefore wish to test the following hypotheses (in general we can test whether the coefficient is equal to
any value (µ0), however, in practice we usually want to test βj = µ0 = 0):

Null and Alternative Hypotheses:

H0 :βj = µ0

HA :βj 6= µ0

Under the null hypothesis we have the following t-statistic:

t =
β̂j − µ0

SE(β̂j)
(1)

Using equation 1, we can calculate a number from the data that we have sampled. This number needs
to be compared to a reference distribution to determine how extreme the sample would be under the null
hypothesis. Returning to our β estimator from earlier:

β̂ = (XTX)−1XTY = (XTX)−1XT (Xβ + ε)

= β + (XTX)−1XT ε

β̂ = N (β, σ2(XTX)−1)

With V ar(β̂) = σ2(XTX)−1 and so V ar(β̂j) = σ2

N∑
i=1

(xij−x̄j)2
= σ2

SSXj

Moreover, the variance σ2 is approximated by σ̂2 = SSE
n−p−1 , where SSE =

N∑
i=1

(yi − ŷi)2
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t =
β̂j − µ0√

SSE
n−p−1

SSXj

=

β̂j−µ0√
σ2

SSXj√
SSE

σ2(n−p−1)

=
z√

N∑
i=1

(
yi−ŷi
σ )2

(n−p−1)

∼ N (0, 1)√
χ2
n−p−1

n−p−1

∼ tn−p−1

As z =
β̂j−µ0√

σ2

SSXj

follows a standard normal distribution, V =
N∑
i=1

(yi−ŷiσ )2 follows a chi-squared distribution

with n − p − 1 degrees of freedom (V ∼ χ2
n−p−1), under the null hypothesis, the t-statistic derived above

must then follow a t distribution with n− p− 1 degrees of freedom.

We are now able to calculate the probability of observing the specific sample (or a more extreme value)
under these conditions. This probability is referred to as the p-value (5.1).

Consider the following data generated by y = 2x+ 1 + ε:

x 3.15 0.77 2.44 2.88 4.93 3.77 4.73 3.00 0.28 1.72
y 5.88 6.26 5.16 2.20 5.24 3.66 9.89 5.91 2.77 5.47

The least squares solution to this problem yields: β̂0 = 3.74, β̂1 = 0.544. Note how we were unable to recover
the original parameters of β0 = 1 and β1 = 2 from the noisy sample. Regardless, we are trying to determine,
given the sample of data, if there actually is a linear relationship in the system. Under the hypotheses

H0 : β1 = 0 and HA : β1 6= 0, we can obtain the t-statistic: t =
β̂j−µ0

SE(β̂j)
= 0.544

0.456 = 1.193. The corresponding

two sided p-value = 0.267. See Figure 3 for a graphical representation of this result. Using the usual test
for significance α = 0.05, we would be unable to reject the null hypothesis in this case. In otherwords, the
sample that we have obtained could be consistent with a system parameter of β1 = 0.

Note that as our linear model complexity increases, we may not want to test relations in isolation and
moreover, despite our model assumptions, there may be some correlation among predictor variables that
affect the inferences that we make from a given model. We can then run a statistical test that accounts for
multiple variables at once, this is the F-test (5.3) derived from the ANOVA test.
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Figure 3: Figure showing the reference t-distribution (with 8 degrees of freedom) and the magnitude of the
test statistic achieved in this example

5.3 F-test

Assuming the above assumptions are met, for two nested models (i.e. consider model 1 (M1) and model 2
(M2) where M2 contains all of the predictors of M1 and more), we can test whether the additional parameters
of M2 form a significantly better model than those found in M1.

Null and Alternative Hypotheses:

H0 :β1 = · · · = βp = 0

HA :βj 6= 0, for at least one value of j

To start, we consider the R2 which is the proportion of the overall variability of Y that is explained by the
model Ŷ .

R2 =
MSS

TSS
= 1− RSS

TSS
=
TSS −RSS

TSS
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with MSS =
N∑
i=1

(ŷi − ȳ)2, TSS =
N∑
i=1

(yi − ȳ)2, RSS =
N∑
i=1

(yi − ŷi)2

The F-test then tests if all of the βj coefficients are 0. Essentially, if the model explains ‘most’ of the variance
in the system, there is evidence that at least one of the predictors must be linearly associated with the
response. We are comparing the ratio of the average amount of variance that each predictor explains to the
average amount of variance that is left unexplained in the model.

f =
Explained Variance

Unexplained Variance
=

(TSS −RSS)/p

RSS/(n− p− 1)
(2)

This statistic can be shown to follow a F-distribution:

f =
(TSS −RSS)/p

RSS/(n− p− 1)

=

(
N∑
i=1

( ŷi−ȳσ )2)/p

(
N∑
i=1

(yi−ȳσ )2)/(n− p− 1)

∼
χ2
p/p

χ2
n−p−1/(n− p− 1)

∼ Fp,n−p−1

Be careful: Violations of the assumptions (linearity/homoskedasticity/Gaussian noise) can lead to
incorrect results.
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