
Change Point Modeling and Regime Learning in

Markov Switching Systems
Modeling the Effects of Students’ Interactions with Immersive Simulations

A thesis presented

by

Nicholas S. Hoernle

to

Institute for Applied Computational Sciences

in partial fulfillment of the requirements

for the degree of

Master of Engineering

in the subject of

Computational Science and Engineering

Harvard University

Cambridge, Massachusetts

May 2018

Thesis Advisors:
Dr. Pavlos Protopapas
Prof. Barbara Grosz
External Advisor:
Dr. Kobi Gal

Author:
Nicholas S. Hoernle

Change Point Modeling and Regime Learning in Markov Switching Systems

Abstract

Simulations that combine real world components with interactive digital media provide a

rich setting for students with the potential to assist knowledge building and understanding

of complex physical processes. This thesis addresses the problem of modeling the effects of

multiple students’ simultaneous interactions on the complex and exploratory environments

such simulations provide. We work towards assisting educators with the difficult task of

interpreting student exploration and we direct this research by considering the specific case

of Connected Worlds, an innovative mixed reality simulation.

We introduce switch based models and propose the switching state space model as a

good candidate for decomposing the time series state log data that result from a session

with Connected Worlds. The model breaks the time series into periods that individually

are easily interpreted. This work presents an inference algorithm that learns the transition

points between successive periods in the time series as well as the internal dynamics that

govern each period. The algorithm differs from other switch based inference schemes in

that its primary goal is to decompose the time series in a way that is human interpretable.

The model was applied to data that was obtained from Connected Worlds and it was

used to segment sessions into multiple periods. Inferred parameters associated with the

ii

individual periods were used to generate text-based descriptions of the system dynamics.

Two experimental visualizations of the model output were designed. These visualizations

included the generated text-based descriptions and a movie representation of the system

dynamics. We designed two experiments to test the interpretability of the inferred periods

and the text descriptions of the dynamics that were present in the associated video clip.

Our results indicate that the switch based model finds relevant boundaries between salient

periods and it generates representative text that describes the period dynamics.

iii

Contents

Abstract . ii

Acknowledgments . x

Introduction 1

1 Connected Worlds 4

1.1 Description of Connected Worlds . 4

1.1.1 Introduction to Connected Worlds . 4

1.1.2 Water Cycle Simulation . 5

1.1.3 Plant-Animal Relations . 6

1.2 Need for Assistive Technology . 8

2 The Switching State Space Model 9

2.1 Switch Based Models . 9

2.2 Background Information . 11

2.2.1 State Space Models and Hidden Markov Models 11

2.2.2 Forward Algorithm . 12

2.2.3 Backward Algorithm . 13

iv

2.2.4 Viterbi Algorithm . 14

2.3 Switching State Space Models . 15

2.3.1 Interpretability of the SSSM . 16

2.3.2 Connected Worlds as an Autoregressive System 17

2.4 Inference in Switching State Space Models . 18

2.4.1 Approximate Maximum Likelihood Estimation for Switching State
Space Models . 19

2.4.2 Background on Inference for Probabilistic Models 21

2.4.3 Algorithm for Posterior Inference of Switching State Space Models . . 26

3 User Study 31

3.1 Empirical Validation . 31

3.2 Verification of Regime Label Inference . 32

3.3 Validation of Model Interpretability . 34

3.3.1 Experiment 1 . 35

3.3.2 Experiment 1 Results . 35

3.3.3 Experiment 2 . 37

3.3.4 Experiment 2 Results . 39

3.3.5 Analysis of Results for Experiment 2 39

4 Future Work and Conclusion 44

4.1 Future Work . 44

4.1.1 Bayesian Non-parametric Learning for the SSSM 45

4.1.2 The SSSM as an Assistive Classroom Tool 48

4.2 Conclusion . 49

v

References 51

Appendix A Plant and Animal Relations 55

Appendix B Posterior Probability of Correct Period Selection 57

vi

List of Figures

1.1 Bird’s eye view of the CW simulation. Biomes are labeled on the perimeter
and logs appear as thick red lines. Water enters via the waterfall and in this
image it is mainly flowing from left to right toward the Desert and the Plains. 5

1.2 Flow chart showing the water cycles that are present in CW. Blue solid lines
represent main water flows, dotted lines represent other possible flows of
water that often are not present or are negligible. Green, diamond boxes
represent the actions that the students can take that will change the water
cycles that are present. Gray circles are regions or objects in the simulation
and gray boxes relate to one of the four biomes. 7

2.1 Graphical model for the switching-state space model. A latent discrete
switching variable (St) selects an active, real-valued state space model (X(m)

t).
The observation vector (Yt) depends on the active regime at time t. 16

2.2 Posterior samples and associated density plot from the posterior of a Gaussian
mixture model with true parameters µ1 = −1, µ2 = 1, σ1 = σ2 = 0.75. Left
shows the density plot for the posterior of the mean parameters. Right shows
the posterior sample trace. The label switches can be seen at samples 1000
and 2000 resulting in the multi-modal posterior on the left. 28

2.3 Updated graphical model showing the semi-supervised switching labels,
along with the choice of only two chains between two semi-supervised
points. This representation is repeated M− 1 times to describe the M− 1
switches between the M regimes. Note that the labeled switch variables at
the boundaries (St and St+K) are shared between successive regimes. 30

vii

3.1 An example of a generated time series from the SSSM model of equation 3.1.
The x axis represents time, and the y axis shows the observations. Regime
labels are shown as black and gray dots representing the two label options.
True labels (top) are compared to the inferred labels from Algorithm 1 (middle)
and the Gaussian merging (bottom). 33

3.2 Histogram of the percent of correctly inferred labels for the observed output.
The structured sampling Algorithm 1 (a) learns the regime labels more
accurately than the uninitialized Gaussian merging algorithm (b). 33

3.3 Expert validation of five different test files from sessions with CW. The bar
plot shows the fraction of correctly identified switches between automatically
identified periods. 36

3.4 Screen-shot of the user interface designed to evaluate the interpretability
of Algorithm 1. The video representation at (1) is played for the duration
of the period. Three plausible descriptions (of which (2) is one of these)
are presented and the validator is asked to select the description that best
describes the dynamics shown in the video. In this case, Description 3 is the
correct solution. 38

3.5 Bar plot of the results from Experiment 2. There are 5 files that were tested.
The fraction of correctly selected period descriptions from Algorithm 1 is
compared to that from the control conditions. The control conditions include
uniformly spaced periods for 8 and 5 periods respectively. 40

3.6 Graphical model for the hierarchical logistic regression that is conducted to
determine the interpretability effect of Algorithm 1 and Uniform8 over the
base Uniform5 condition. The observed data y corresponds to a Bernoulli trial
where a description is selected to match a video clip or not. A given trial has
a period specific probability of being chosen correctly pi. pi, in turn, depends
on the file’s ease of labeling and the algorithm effect. The αa parameters
represent the effect of the algorithm on the probability of correctly selecting
the appropriate description. The periods depend on the file and algorithm
means by a global variance parameter σ. 41

viii

A.1 Map of the relationships between plants, animals and biomes in the CW
environment. The biomes are shown in yellow. The blue boxes correspond
to areas of the simulation that do support animals but do not have plants
that grow there. The fauna-flora specific relations can clearly be seen by the
arrows that link the plants (green ovals) and animals (red ovals). The plants
and animals are endemic to their biome. 56

B.1 Diagram to represent the periods that are inferred by Algorithm 1 in com-
parison to those defined by Uniform5 and Uniform8. The vertical yellow
lines denote the period boundaries and the color of the period presents the
posterior probability that an external validator will select the text description
that is generated by the algorithm. Dark colors correspond to high probability
for being selected and light colors correspond to a low probability. 58

B.2 Sequence of 4 snapshots from the video given to validators (each frame is 3
seconds apart). The logs are moved in frames 1 and 2 such that the water is
mostly flowing to the Plains and Jungle in frames 3 and 4 and afterwards. . 59

ix

Acknowledgments

Thank you to the Oppenheimer Memorial Trust, the Harvard IACS, the NSF and my family

for helping to make this study period financially feasible.

To my parents, for always being supportive of my endeavours no matter how far they

may take me from home. Thank you for your comments, input and the encouragement you

have given in reading my work and throughout my time at Harvard. Doug, Niki and Ali,

thank you for the constant support and for the interest that you have shown in the work

that I do.

Barbara, thank you for the time and effort that you have committed to this project, it has

been a privilege to work with you. To Andee and Leilah, thank you for accepting me to

work on the ESSIL project. Your insights and passion for these education tasks are inspiring.

To Kobi, for all of the time that you have spent mentoring me over this past year. I

appreciate your input and I am excited about having the opportunity to continue working

with you at Edinburgh.

Pavlos, you have been an inspiration throughout my time at Harvard. Thank you for

being a thoughtful mentor as well as a supportive friend. I look forward to following the

progress of the CSE Program as it continues to thrive under your leadership.

This paper is based on work supported by the National Science Foundation under grant

IIS-1623124. Any opinions, findings, and conclusions or recommendations expressed in this

material are those of the author(s) and do not necessarily reflect the views of the National

Science Foundation.

x

Introduction

Complex systems simulations are becoming increasingly common in formal and informal

STEM learning environments (Smørdal et al., 2012). These simulations present scientific

phenomena in a manner that connects pedagogical learning outcomes to the firsthand

experience of real-world outcomes. However, the open-ended and exploratory nature of

these simulations presents challenges to teachers’ understanding of students’ learning.

Students’ actions have both immediate and long-term effects on a simulation, leading to

a rich array of potential outcomes. Teachers may wish to lead discussions on students’

interactions to highlight salient learning opportunities, but if there are too many ‘moving

parts’ to the simulation, this becomes a challenging ideal.

This thesis presents an investigation into and a case study for using artificial intelligence

techniques to extract useful information from the log files of exploratory learning environ-

ments. We study an exploratory learning environment that simulates an ecosystem and

aims to teach students about systems, systems thinking and how their actions can have

possible long term and spatially removed effects on the system. The system states that result

from students’ interactions with the simulation are logged and form a time series of data.

This time series represents the dynamical responses of the complex system to the group

specific interactions. Our hypothesis is: complex time series log data can be decomposed into

periods that individually are readily understood. Together these periods explain the dynamics

that ensued, but individually they might explain salient fragments or examples of the larger

causal cycles at play.

1

We study methods for extracting salient periods from the log files that are generated by

complex exploratory learning environments. Switching state space models (Ghahramani and

Hinton, 2000) are a class of model for time series data where the parameters controlling a

linear dynamic system switch according to a discrete latent process. These models have been

used in a wide variety of domains including control (Ikoma et al., 2002), statistics (Cappé

et al., 2009), econometrics (Giordani et al., 2007) and signal processing (Kim et al., 1999). They

combine hidden Markov and state space models to capture regime switching in non-linear

time series data (Whiteley et al., 2010). The intuition is that a system evolves over time but

may undergo a regime change that results in an intrinsic shift in the system’s characteristics.

Allowing for discrete points in time where the dynamics change enables simple linear

models to capture more complicated and non-linear dynamics. We propose that regime

switching models also help to increase the interpretability of large and complex systems by

automatically segmenting a time series into regions of approximately uniform dynamics.

The result is that a complex session is broken into smaller periods that are more readily

understood when one reflects upon the session.

The switch based model formalizes a procedure for decomposing a time series into

coherent periods broken by the change points between those periods. However, inference in

these models is extremely challenging. The tightly coupled nature of the regime parameters

and the locations of switch points presents a computationally intractable problem. We

design a novel inference algorithm for learning the parameters that are associated with

the unknown individual regimes. Given the regime specific parameters, inference over the

change points can be conducted using standard techniques from time series modeling.

Our eventual goal is to automatically generate relevant summaries of the system dynam-

ics such that teachers can effectively engage students in discussions that stem from their

own experiences with the simulation. To this end, we investigate the human interpretability

of the resulting periods that are identified by the discussed inference algorithm. We use

regime specific parameters to generate a short description of the dynamics that were present

2

in a given period. We conduct two validation experiments to evaluate the extent to which

the inferred switch points and the associated regime descriptions are comprehensible to

external human validators.

The thesis proceeds as follows. In Chapter 1, we introduce Connected Worlds, the ex-

ploratory learning environment that is used as a case study for this investigation. Chapter 2

gives a detailed description of the switching state space model. This chapter elaborates on

hidden Markov and state space models and presents the switch models that combine these

two baselines. In addition, Chapter 2 discusses the past work for performing maximum

likelihood estimation of the parameters that are associated with the switching state space

model. Lastly, this chapter describes the inference algorithm that we use for extracting

salient periods from the Connected Worlds log data. Chapter 3 describes the evaluation

of the inference algorithm. We generate synthetic data and test the algorithm’s ability to

correctly detect change points in a given time series. We then design two experiments that

aim to test the coherence and interpretability of the model’s output. Finally, Chapter 4

presents two avenues for future research. Work in Bayesian non-parametrics offer exciting

possibilities for applications in these domains as the number of periods is learned by the

model. Moreover, future work will need to design and evaluate tools that incorporate such

information and are appropriate for classroom implementation.

3

Chapter 1

Connected Worlds

1.1 Description of Connected Worlds

1.1.1 Introduction to Connected Worlds

Connected Worlds1 (CW) is a multi-person ecology simulation with the goal of teaching

students about complex systems and systems thinking. It consists of an immersive envi-

ronment comprising four interconnected biomes and a central flow of water that is fed

by a waterfall. Students plant trees which flourish or die, animals arrive or depart, and

rain clouds form, move through the sky and deposit rain into the waterfall. All the while,

students direct the water stream to different areas in the simulation to provide enough water

to sustain plant and animal life. The simulation exhibits large scale feedback loops and

presents the opportunity for participants to experience how their actions can have (often

unintended) effects that are significantly removed in time and/or space.

Students interact with CW by positioning logs to control the direction of water that

flows in the simulation and by planting trees in the different biomes. Water can be directed

1https://nysci.org/home/exhibits/connected-worlds/

4

Figure 1.1: Bird’s eye view of the CW simulation. Biomes are labeled on the perimeter and logs appear as thick
red lines. Water enters via the waterfall and in this image it is mainly flowing from left to right toward the
Desert and the Plains.

to each of the four biomes (Desert, Plains, Jungle and Wetlands) and the distribution of

flowing water depends on the placement of the logs. Water on the floor of the simulation

(which represents a flood plain) is a usable resource as it can be directed to the biomes.

Certain sources of water are under the students’ direct control. Students can actively release

water into the system from the water that is stored in the Reservoir or from surplus water

that is present in a biome. Rainfall events are out of the students’ control and these release

water into the Waterfall (to replenish the primary source of water) and into the individual

biomes. The Mountain Valley can also receive rain and it forms a river source when this

happens. Figure 1.1 is a snapshot showing a bird’s eye view of the state of logs and water in

the CW simulation. Not seen in this snapshot are the plant and animal counts or levels in

the biomes. The volume of water that is stored in each biome is also not shown.

1.1.2 Water Cycle Simulation

Every biome in CW shares the common water resource. The amount of water for a given

simulation is pre-defined, thus it forms a limited resource that students are required to

manage carefully. CW simulates a water cycle where water is directed to biomes and used

5

to sustain plants and animals. Evaporation, which is dependent on the numbers and levels

of plants, and rainfall, which depends on the amount of evaporation, brings water back to

the water sources where it once again becomes a usable resource.

Figure 1.2 displays a schematic of the water cycle that is present in CW. Water is available

from three sources: the Waterfall, the Mountain Valley and the Reservoir. The Waterfall

flows whenever water is available and thus the amount of input water from the Waterfall is

out of the students’ control. The Mountain Valley is a secondary source of water and it only

flows when it rains in this area2. Students choose when to release water from the Reservoir

and thus, apart from overflow events, this source of water is directly under their control.

Overflow events result when it rains in the Reservoir and the water ‘spills’ out onto the

simulation floor when the Reservoir is at full capacity. Students position logs on the floor of

the simulation (see Figure 1.1) to direct some portion of water to some subset of the four

biomes. Once a biome has water, the students can plant trees. Higher level trees require the

presence of lower level trees. The number and level of trees affects the amount of water that

a biome requires. Lastly, when water is present in a biome, students can pipe water out of

the biome by placing a log at that biome’s wall (one of the purple, aqua, red or blue lines in

Figure 1.1).

1.1.3 Plant-Animal Relations

Students plant trees and observe the arrival of animals that use the trees to support their

habitat. Mimicking a real-world scenario, the fauna for a biome depend on the flora, and

the flora are unique for a specific biome. In other words, each biome can support different

plants and each type of plant attracts a certain type of animal. Larger and higher level plants

require the presence of smaller and lower level plants. Often the animals that are supported

by the top level (level 4) plants are the most aesthetically pleasing, and part of the goal for a

2System parameters allow the rain in the Mountain Valley to be turned off, stopping the flow from this area.
The rain in the Mountain Valley has been disabled for the experiments presented in this study.

6

Figure 1.2: Flow chart showing the water cycles that are present in CW. Blue solid lines represent main
water flows, dotted lines represent other possible flows of water that often are not present or are negligible.
Green, diamond boxes represent the actions that the students can take that will change the water cycles that are
present. Gray circles are regions or objects in the simulation and gray boxes relate to one of the four biomes.

7

given simulation might be to attract these animals. Students are thus required to manage

their resources to support lower level plants and animals before achieving the top level in a

specific biome. The plant and animal relationships are summarized in Appendix A.

1.2 Need for Assistive Technology

The nature of the simulation is complex on a variety of dimensions. The simulation involves

a large number of students simultaneously executing actions that change the state of the

environment. No one person - including the teacher or interpreter - can possibly follow

all student actions and the resulting system changes, even in a relatively short simulation.

Each participant may have a different view of what transpired, depending on the actions he

or she took and the state changes that he or she noticed. Thus we have been developing

tools to support teachers’ understanding of the effects of students’ interactions in complex

exploratory learning environments such as CW. In Chapter 2 we present a model that aims

to decompose a session with CW into periods that might assist a teacher in identifying

salient learning opportunities from a class’s specific session with CW.

8

Chapter 2

The Switching State Space Model

We introduce switch based models as a tool for segmenting a time series into periods that

can individually be described by simpler dynamics. In this chapter, we describe switching

models and related work that leads to the construction of these models. Thereafter, we

propose a novel inference algorithm for learning the parameters that are associated with the

switches and the resulting periods.

2.1 Switch Based Models

The switching state-space Model (SSSM) (Ghahramani and Hinton, 2000), or switching

linear dynamical system (SLDS) (Fox et al., 2009), captures nonlinear dynamical phenomena

by considering discrete points in time where a system switches among conditionally linear

dynamical modes. Our primary reason for exploring this model is to perform inference over

the assignment of data to specific linear dynamical modes (or regimes), thereby characteriz-

ing periods that exhibit dynamics controlled by the regimes. The ease of interpretability of

the conditionally linear regimes is an attractive merit of this model, while the presence of the

discrete switch points allows the model to capture a wide variety of non-linear dynamics.

9

The SSSM has been used for prediction tasks (Fox et al., 2007; Li and Jilkov, 2003) and

also for inference tasks (Fox et al., 2009; Jonsen et al., 2007; Pavlovic et al., 2001) where the

primary goal was to discover latent structure in time series data. Oh et al. (2008) use the

term ‘learning’ to describe the segmentation of the motion of honey bees into different

behavioral regimes. They describe the identification of the parameters that characterize the

motion within a regime as ‘quantification’. Similarly, we aim to (1) ‘learn’ the periods that

define salient regimes in the CW simulation and (2) ‘quantify’ these regimes for the purpose

of generating a useful description of the system dynamics.

This work is broadly related to the field of mining information from time series data (Es-

ling and Agon, 2012; Horst and Abraham, 2004). Alternative time series mining approaches

are concerned with finding small sections or events that might be of relevance within the

larger time series. We rather focus on decomposing the entire time series into periods that

are coherent to a human observer. In contrast to the switching systems that we discuss, these

other approaches have aimed to cluster short segments from time series data to identify

certain patterns that might arise in a database (Vlachos et al., 2003; Tanaka et al., 2005; Patel

et al., 2002). This involves windowing a time series and defining wavelets, motifs (Patel et al.,

2002) or segments that are commonly found throughout the database. Preston et al. (2009)

propose an approach to define and mine for events in a time series database.

The SSSM has been extensively applied to niche domains. We present a new avenue

of study in which SSSMs are used to describe complex time series in a way that can be

easily interpreted by people. Ghahramani and Hinton (2000) introduce and give a detailed

presentation of the SSSM. Pavlovic et al. (2001) and Giordani et al. (2007) use switching

models to capture non-linear behavior in a time series, applied to model human motion

and econometrics respectively. SSSMs have also been applied in object tracking domains

where it is necessary to predict the trajectory of multiple objects (Fox et al., 2007). Whiteley

et al. (2010) introduce a sequential Monte Carlo algorithm for inference over SSSMs using

discrete particle filters. We propose an algorithm to perform posterior inference over the

10

latent variables in this model with the primary focus of interpretability of the model.

Before describing the SSSM in Section 2.3, we first provide a brief introduction to the

linear state-space model for continuous time series data and the hidden Markov model for

discrete time series data. The SSSM couples these two models and thus this background

work is a necessary step toward constructing the SSSM.

2.2 Background Information

2.2.1 State Space Models and Hidden Markov Models

Hidden Markov models (HMM) and state-space models (SSM) define a joint probability

density over a sequential collection of hidden state (X) and observed (y) random vec-

tors (Ghahramani, 2001; Shumway and Stoffer, 2000). The HMM refers to the case when the

states and observations have discrete values. For example at a time step t the hidden state

Xt is represented by a categorical variable that can take one of M possible discrete values,

where a value indexes a state. The associated observations yt are discrete symbols where the

observation probabilities P(yt | Xt) can be fully specified by an M× K observation matrix,

with K being the number of possible observation states. Given the hidden state at time t in

an HMM, the associated observation is independent of all other observations. Moreover, the

hidden states obey the Markov independence property: state Xt is conditionally independent

from the previous states (Xk for k ∈ 1, 2, . . . , t− 2) and future states (Xk for k ∈ t + 2, . . . , T)

given the value of state Xt−1 and Xt+1 respectively. The joint probability for the sequence of

states and observations can therefore be factored as3:

P(X1:T, y1:T) = P(X1)P(y1 | X1)
T

∏
t=2

P(Xt | Xt−1)P(yt | Xt) (2.1)

3Here we use the notation X1:t to refer to all states Xk, k ∈ [1, 2, . . . , t]

11

When the model is changed to allow for real-valued state and observation vectors, it is

termed a state-space model. The simplest and most commonly used models that follow

this structure assume that the transition and output functions are linear and time invariant

and the distributions of the state and observation variables follow multivariate Gaussian

distributions (Ghahramani and Hinton, 2000). The linear Gaussian SSM is defined by the

tuple (A, C, Q, R) in:

Xt = AXt−1 + wt

yt = CXt + vt

(2.2)

where A is the state transition matrix, wt ∼ N (0, Q) is the state transition noise, C is the

output matrix and vt ∼ N (0, R) is the observation noise.

The problem of inference or state estimation for a SSM with known parameters con-

sists of estimating the posterior probabilities of the hidden variables given a sequence

of observed values. This inference problem can be broken into filtering, smoothing and

prediction (Shumway and Stoffer, 2000). The goal of filtering is to use all the data up to

time t to calculate the probability of the hidden state Xt. Smoothing, aims to use all of

the data available from time 1 . . . T (with T > t) to calculate the probability of Xt. Lastly,

prediction is calculating the probability of the future states Xt+1 given all the data from time

1 . . . t. A minor terminology note is that when we perform filtering and smoothing in the

context of linear Gaussian state space models, the algorithms are termed Kalman filtering

and smoothing respectively.

2.2.2 Forward Algorithm

The forward algorithm, also termed filtering, aims to calculate the probability that a certain

state Xt adopts a specific value using only data that is available up to that point in time

(y1:t). The joint probability of the latent state and the previous data is:

12

P(Xt, y1:t) = ∑
Xt−1

P(Xt, Xt−1, y1:t)

= P(yt | Xt) ∑
Xt−1

P(Xt | Xt−1)P(Xt−1, y1:t−1)

(2.3)

We have applied the Markov independence property where:

yt | Xt ⊥⊥ y1:t−1, X1:t−1

Xt | Xt−1 ⊥⊥ y1:t−1, X1:t−2

(2.4)

Note that the joint probability P(Xt−1, y1:t−1) can be expressed in the same form as

equation 2.3 but dependent on P(Xt−2, y1:t−2). This defines an efficient recursive routine

for calculating the probabilities for all states up to time t using the past data y1:t. Note that

P(yt | Xt) and P(Xt | Xt−1) are given by the transition and emission probabilities (or the

emission likelihood in the SSM) and this recursion can be efficiently implemented using a

dynamic programming implementation.

2.2.3 Backward Algorithm

When the data are available in an off-line setting, it is advantageous to use future values to

help calculate the probability of the state at time t. The backward algorithm, also termed

smoothing, achieves this by calculating the probability of Xt by using all available data y1:T,

with t < T. The backward recursion depends on the value of the forward filter and a new

term that can be factored similarly to equation 2.3.

P(Xt, y1:T) = P(y1:t, yt+1:T, Xt) = P(y1:t, yt+1:T | Xt)P(Xt)

= P(yt+1:T | Xt)[P(y1:t | Xt)P(Xt)]
(2.5)

13

P(yt+1:T | Xt) corresponds to calculating the probability of observing the future data

given the current state (called backward values). P(y1:t | Xt)P(Xt) = P(y1:t, Xt) is the

probability from the forward algorithm in equation 2.3. We are now able to factor the

backward term, again using the Markov independence property:

P(yt+1:T | Xt) = ∑
Xt+1

P(yt+1:T, Xt+1 | Xt)

= ∑
Xt+1

P(yt+1:T | Xt+1)P(Xt+1|Xt)

(2.6)

We can calculate P(yt:T | Xt) in terms of P(yt+1:T | Xt+1) thereby defining the set of

backward recursions that are needed to calculate fully the joint probability in equation 2.5.

This recursion is given by:

P(yt:T | Xt) = ∑
Xt+1

P(yt, yt+1:T, Xt+1 | Xt)

= P(yt | Xt) ∑
Xt+1

P(yt+1:T | Xt+1)P(Xt+1 | Xt)

(2.7)

One would therefore start the backward recursion from time T to calculate successively

the joint probabilities of the states Xt:T. From equation 2.5, it can be seen that the forward

and backward recursions are both used to calculate the probability of Xt given all of the data

y1:T. In practice, the forward algorithm is run for one pass of the data from t = 1 to t = T

and then the backward algorithm is run from t = T to t = 1. Note that we have referred to

the HMM in the above equations (the marginalizing steps are summations) but appropriate

adjustments (to integrals) will present the SSM filtering and smoothing recursions.

2.2.4 Viterbi Algorithm

The Viterbi algorithm (Forney, 1973) for HMMs recursively finds the most probable path

of states that generated the observed data (Nasrabadi, 2007). We first define the partial

14

probability πt,i to be the probability of the best path for states X1:t that leads to state Xt = i

as the terminating state. Intuitively, the best path leading to state Xt = i at time step t must

include the best path to Xt−1 (assuming the same ending state i). We can therefore expect a

recursive structure to an algorithm that decodes the best state sequences. In the following,

we denote Xi as all possible terminating states that can be adopted at the time step t.

πt,i = max
∀Xi

{
πt−1,jP(yt | Xi)P(Xi | Xt−1)

}
(2.8)

The algorithm uses the maximum probability from the previous state along with the

observation probabilities for decoding the most likely present state.

2.3 Switching State Space Models

A SSSM includes M latent continuous state-space models and a discrete switching variable.

Each of the models, referred to as a regime, has its own dynamics. At each point in

time, the switching variable selects one of the individual state-space models to generate an

observation vector.

The SSSM model is formalized as:

X(m)
t = Φ(m)X(m)

t−1 + w(m)
t

Yt = St A(m)X(m)
t + vt

(2.9)

Here, X(m)
t denotes the latent continuous valued state for process m at time t. St is a

discrete valued switching variable that selects the mth regime such that regime m at time

t is active. The real-valued state X(m)
t and the parameters associated with the mth regime

produce the real-valued observation vector Yt. The states’ evolution over time depends on

the regime dependent transition matrix Φ(m) and the regime dependent noise w(m)
t . When

15

Figure 2.1: Graphical model for the switching-state space model. A latent discrete switching variable (St)
selects an active, real-valued state space model (X(m)

t). The observation vector (Yt) depends on the active
regime at time t.

the states and observations are assumed to follow Gaussian distributions, each regime can

be viewed as a linear Gaussian SSM as discussed in section 2.2.1.

Figure 2.1 presents a graphical representation of a SSSM. Edges between nodes represent

conditional dependencies, gray nodes are observed variables and white nodes are latent

variables. Not shown in the figure are the regime dependent transition noise w(m)
t and the

observation noise vt which have the same interpretation as the noise models in the SSM.

A(m) is the output matrix in the state space formulation, which can be regime dependent

but for the applications that follow, it is taken to be the identity matrix.

2.3.1 Interpretability of the SSSM

We illustrate the SSSM interpretability by presenting an example of how it can describe the

effects of students’ interactions in CW. Yt represents the observed water level in the different

areas of the simulation at time t. X(m)
t describes the expected levels of water under regime

16

m at time t. Φ(m) controls the water flow in the simulation according to the transitions in

regime m. St selects which of the regimes to use to describe the water levels Yt.

A single regime is insufficient for modeling the effects of students’ interactions with

CW, because students’ actions have complex effects on the system dynamics. For example,

when students choose to direct water to the Desert and Plains and plant many trees in the

Desert, the system dynamics are entirely different from the case when water is directed

towards the Jungle and the Desert and the Plains are left to dry. We therefore need to define

multiple regimes, where each regime describes a series of events that can be (stochastically)

explained by the regime dynamics. A regime is active for a duration of time in CW. We call

this duration a period. In our example, in one period water mainly flows to the Plains and

to the Desert. In the next period, students move logs to re-route water flow to the Jungle

(potentially because plant life is dying there). The students may also release water from

the Reservoir to direct to the Desert. These temporal dynamics are captured by the second

period’s regime parameters. The output of the model is a number of regimes, each active

for the corresponding periods, that together capture the system dynamics.

It is worth highlighting that for the SSSM in general, and indeed for the inference that we

target in CW, the model is highly under-specified. The points in time that define the changes

between regimes are unknown, the duration of the periods are unknown and the regime

specific parameters are unknown. Moreover, the number of regimes is unknown. The goal

of Section 2.4.3 is to introduce an efficient unsupervised algorithm for performing inference

over these unknown variables. For this implementation, we define a reasonable number of

regimes M but in Section 4.1.1 we discuss the related work in Bayesian non-parametrics

which allow us to remain agnostic about the number of regimes that are present.

2.3.2 Connected Worlds as an Autoregressive System

In Section 2.3.1, we have described a system where the direct observation of the underlying

process is available. This is termed a vector autoregressive model (VAR) with switching (Fox

17

et al., 2009; Shumway and Stoffer, 2000; Kim, 1994). An order r switching VAR process with

observations yt is defined by:

yt =
r

∑
i=1

A(m)yt−i + w(m)
t w(m)

t ∼ N (0, Q(m)) (2.10)

Equation 2.10 shows that the observations at time t depend linearly on the previous

r observation vectors. In CW, we use a VAR(1) process. Since the SSSM generalizes the

switching VAR process, we refer to the SSSM throughout this study but recognize that the

models also apply to the VAR specific case. Any VAR(r) process can be written in a SSM

format as follows:

Xt =

A1 A2 . . . Ar

I 0 . . . 0
...

. . .
...

...

0 . . . I 0

Xt−1 +

I

0
...

0

wt (2.11)

yt =

[
I 0 . . . 0

]
Xt (2.12)

2.4 Inference in Switching State Space Models

We aim to perform inference over the latent states X(m)
t , the regime parameters Φ(m), and

latent switching variable St in the SSSM defined in equation 2.9. Computing posterior

distributions for SSSMs is computationally intractable (Murphy and Russell, 2002; Kim,

1994). Figure 2.1 displays a graph that consists of M state space models that are marginally

independent. These models become conditionally dependent when Yt is observed (as is the

case in this figure and in general for the models that we deal with). The result is that X(m)
t is

conditionally dependent on the value of all of the other latent states and switching variables

18

for times 1 through T and regimes 1 through M (Murphy and Russell, 2002; Ghahramani

and Hinton, 2000).

Previous approaches address the inference intractability by using approximation meth-

ods such as variational inference (Ghahramani and Hinton, 2000) or a ‘merging of Gaus-

sians’ (Kim et al., 1999; Murphy and Russell, 2002). Variational inference approximations

transform an intractable Bayesian expectation problem into an optimization problem by

minimizing the Kullback-Leibler divergence between a simpler family of approximating

distributions and the unknown, intractable posterior (Attias, 2000; Saul and Jordan, 1996;

Saul et al., 1996; Blei et al., 2003). The merging of Gaussians, discussed in Section 2.4.1, uses

a single Gaussian to approximate the mixture of M Gaussians at each time step. While

these methods have seen success in previous work, they cannot be applied in our domain,

because they allow the system to move back and forth between regimes. Such switching

results in frequent regime changes which can hinder the interpretability of the model. This

work takes a different approach. It imposes structure on the model to address inference and

interpretability challenges together. Another avenue for inference is the sticky hierarchical

Dirichlet process hidden Markov model (sticky HDP-HMM) (Fox et al., 2009, 2007), an

extension of the hierarchical Dirichlet process (HDP) (Teh et al., 2005). We discuss this model

in further detail in Section 4.1.1 and present it as a promising avenue for future work.

2.4.1 Approximate Maximum Likelihood Estimation for Switching State Space

Models

Shumway and Stoffer (1991) assume known regime parameters and use the state space

specific observation probabilities to perform inference over the switching variables in the

SSSM (using the Viterbi algorithm presented in 2.2.4). Their implementation is extended by

Kim (1994); Kim et al. (1999) and Bar-Shalom and Li (1993) to handle the case where the

regime parameters are unknown. The maximum likelihood estimate (MLE) presented by

these authors employs a ‘Gaussian merging’ assumption (Ghahramani and Hinton, 2000) to

19

make the inference tractable. Kim (1994) presents a basic filtering and smoothing algorithm

for the SSSM, combined with a MLE of the unknown regime parameters.

In the standard state space filtering formulation, we wish to calculate the expected value

of the latent states Xt, given the observations y1:t. This corresponds to calculating:

Xt|t = E[Xt | y1:t] (2.13)

Following state space notation for the expectation, Xt|t refers to the expected value of the

latent state at time t given the previous observations. Similarly, Pt|t refers to the covariance

of the estimate for Xt|t conditioned on the data y1:t:

Pt|t = E[(Xt − Xt|t)(Xt − Xt|t)
′ | y1:t] (2.14)

With the introduction of the switching variable St, we require X(i,j)
t|t which is the expected

value for Xt, conditioned on the past data y1:t and the value of St = j and St−1 = i. The

expected values for the states and the covariances associated with these estimators are:

X(i,j)
t|t = E[Xt | y1:t, St−1 = i, St = j]

P(i,j)
t|t = E[(Xt − Xt|t)(Xt − Xt|t)

′ | y1:t, St−1 = i, St = j]
(2.15)

In computing the Viterbi algorithm, we would require the expectations and covariances

in equations 2.15 for every possible value for i and j. If there are M regimes in the model,

this results in M2 terms that are calculated at every time step. The resulting Kalman filter

experiences a growth of terms that is exponential in T, a problem that is also encountered

in Section 2.4.3. Kim (1994) proposes an algorithm for reducing the (M×M) posteriors for

X(i,j)
t|t into just M posteriors by merging the Kalman filter to a single term at each time step.

The approximation that Kim (1994) employs is given by:

X(j)
t|t =

M
∑

i=1
P[St−1 = i, St = j | y1:t]X

(i,j)
t|t

P[St = j | y1:t]
(2.16)

20

Ghahramani and Hinton (2000) call this the ‘Gaussian merging’ approach because in

equation 2.16, X(j)
t|t represents the re-normalized mixture of Gaussians in the numerator. X(j)

t|t

is the E[Xt | St = j, y1:t] with the St−1 dependency marginalized out. The covariance of this

estimator P(j)
t|t is calculated in a similar fashion and can also be interpreted as the posterior

from a weighted mixture of normals4.

Finally, we can use numerical optimization to perform parameter estimation. The

Gaussian merging is used to construct a forward filter to approximate the likelihood of the

regime parameters and the associated switches. This likelihood is maximized to obtain an

approximate MLE for the parameters. It is worth noting that the optimization is highly

susceptible to local maxima due to the tightly coupled nature of the regime parameters and

the locations of the switch points. Thus, the numerical optimization might terminate early

at these local optima leading to incorrect inferences. This is seen in Section 3.3.1.

2.4.2 Background on Inference for Probabilistic Models

The SSSM is a probabilistic graphical model and thus Bayesian inference techniques are

available for approximating the posterior distribution over the latent parameters in the

model. Bayesian inference is appealing in this domain as prior knowledge can be built

into the model and inference algorithm to assist with the inference task. Here, we review

techniques for approximating the posterior distribution in a complicated graphical model

and motivate Markov Chain Monte Carlo as an appropriate inference tool.

Introduction to Bayesian Inference

Bayesian models lend themselves to domains where the interpretability of the model is

of importance (Gelman et al., 2014): the model structure that is imposed on a domain is

4See the derivation in Kim (1994) for further details.

21

considered part of the scientists prior knowledge. Due to this structured (often hierarchical)

model, inference about the latent variables has a strong interpretability within the model’s

domain.

Bayesian statistics is derived from Bayes rule:

P(θ | X) =
P(X | θ)P(θ)∫
P(X | θ)P(θ)dθ

(2.17)

Evaluating equation 2.17 can occasionally be done analytically when the conjugate

structure in certain problems allows for the direct computation within known families

of distributions. This structure is often not available, or conjugacy imposes undesirable

restrictions given the problem setting. Therefore, other means for approximating the posterior

distribution are often required when performing inference in Bayesian models. Variational

inference (Attias, 2000; Saul and Jordan, 1996; Saul et al., 1996; Blei et al., 2003) and Monte

Carlo (MC) are two techniques commonly used to approximate the posterior distribution.

Variational inference can give misleading results when dealing with highly correlated and

co-dependent data, such as data present in time series models (Turner and Sahani, 2011).

MC rather attempts to draw independent samples from the unknown distribution to use

the finite set of samples as an approximation to the original distribution. MC techniques

are appealing due to their strong convergence properties albeit at a high computation

cost (MacKay, 1998).

MC sampling is a popular approach for performing posterior inference in Bayesian

statistics as it presents a technique for evaluating expectations under an unknown target

distribution (MacKay, 1998). MC techniques use the fact that given independent samples x(r)

from a target distribution P(X), the samples can provide a robust estimator of expectations

under the distribution defined by P. The strong convergence properties of MC methods

state that the error of the estimator tends to 0 as the number of samples tends to ∞.

Concretely, the expectation Φ of a function φ under the distribution P can be approximated

22

by the MC estimator Φ̂ = 1
R ∑

r
φ(x(r)). Here Φ =

∫
P(x)φ(x)dx is the true value for the

expectation (MacKay, 1998). Examples of MC sampling include rejection, importance

and slice sampling (Neal, 2003) but these techniques are shown to scale poorly to high

dimensional and tightly correlated distributions.

Markov Chain Monte Carlo

Rather than attempt to draw entirely independent samples from the target distribution,

we can use current samples to propose new, dependent samples in the form of a Markov

chain. Given a valid transition function in the Markov chain, the stationary distribution

of the samples converge to the true target distribution (MacKay, 1998). The subset of MC

techniques that use current samples to propose new, dependent samples is termed Markov

Chain Monte Carlo (MCMC). When explicit structure of the domain allows the derivation

of complete conditionals5 (MacKay, 1998), Gibbs sampling presents an attractive MCMC

technique. More generally, the Metropolis method is used when complete conditionals are

not available.

Metropolis is an algorithm for sampling from an unknown distribution with density

1
Z f (x). Here, f (x) is an un-normalized probability density and 1

Z is the normalizing

constant. The algorithm uses the current sample x to propose a new sample x∗ from a given

proposal distribution (i.e., g(x∗ | x)). The candidate sample x∗ is evaluated according to an

acceptance probability a(x∗, x), and if the proposal state is accepted, we set the new sample

x′ = x∗. Alternatively, the new sample is set to the previous sample x′ = x. The acceptance

probability for Metropolis is given by:

a(x∗, x) = min
[

1,
g(x | x∗)
g(x∗ | x)

f (x∗)
f (x)

]
(2.18)

5The complete conditionals are the conditional distributions of a subset T ⊂ {1, 2, . . . n} of the parameters
given all other parameters not in T.

23

It has been shown that the update from x to x′ leaves f invariant (MacKay, 1998; Gelman

et al., 2014) and therefore as the Markov chain is run indefinitely, the Metropolis algorithm

provably converges to drawing samples from the stationary distribution that is defined by

density f (x). Metropolis provides a general structure for defining a Markov chain that will

converge to drawing samples from the target distribution. However, the algorithm is highly

dependent on the proposal distribution g, and if g is poorly chosen, the algorithm can reject

many samples resulting in a slow convergence of the chain. Similarly, a poor choice of g can

result in samples that are highly correlated and thus the new samples do not explore the

posterior distribution sufficiently for a given limited number of samples, leading to a high

bias in the estimator. Variants of the Metropolis algorithm have been proposed to assist

the exploration of the target distribution. The state of the art is the Hamiltonian Monte

Carlo (HMC) method and the No U-Turn Sampler (NUTS) which modifies HMC by tuning

parameters automatically.

Hamiltonian Monte Carlo and the No U-Turn Sampler

Hamiltonian Monte Carlo (Neal et al., 2011) was introduced as another MCMC technique

to combat the inadequacies of Metropolis. In particular, HMC introduces a structured and

deterministic search of the probability space before making a proposal sample. The aim of

HMC is to efficiently explore the target distribution and thus draw pseudo-independent

samples while still using the convergence guarantees of MCMC.

HMC is inspired by statistical mechanics where particles in space are known to inter-

act and follow trajectories that are defined by Hamiltonian mechanics (Neal et al., 2011).

Hamiltonian equations define the energy of the particle over momentum (p) and position (q)

phase space. HMC is an auxiliary model where a momentum variable (p) is introduced that

allows us to simulate a deterministic dynamic through (p, q) space with the analogy that

the probability corresponds to the distribution of the position (q) of a particle. Hamiltonian

dynamics have three properties that make this simulation useful for the MCMC use-case.

24

The Hamiltonian (1) preserves energy, (2) has reversible dynamics and (3) conserves volume

in phase space. Properties (1) and (3) allow the simulation of Hamiltonian dynamics along

some probability distribution contour such that a new proposal is found that has the same

energy as the current sample. Property (2) is important for conserving detailed balance, a

property of MCMC that ensures the target distribution is left invariant by the simulation

(i.e., does the sampler actually converge to drawing samples from the target distribution).

For HMC, a numerical integration scheme is needed to simulate the differential equations

that are defined by the Hamiltonian (Neal et al., 2011). This numerical integration scheme is

known as a symplectic integrator as is required to conserve energy throughout the course of

the simulation, corresponding to maintaining property (1) of the Hamiltonian. The leapfrog

method makes a small adjustment to Euler’s numerical integration scheme by alternating

between the momentum and position updates with a half-step spacing the discretization

updates. The integration requires two user-defined parameters: the step size ε and the

number of steps used to simulate the dynamics L. Tuning L and ε is shown to be challenging

in practice and can have dramatic effects on the success of the HMC algorithm for exploring

the entire typical set of the target distribution (Hoffman and Gelman, 2014). Note that

choosing ε too small will result in unnecessary computation to simulate Hamiltonian

trajectories. Choosing L too large will result in Hamiltonian trajectories returning to their

starting point, defeating the goal of exploring the target probability space to find independent

samples.

Hoffman and Gelman (2014) introduce the No U-Turn Sampler (NUTS) to automatically

tune these two parameters for the given problem. In essence the algorithm constructs a

binary tree simulating the HMC dynamics for a number of steps that doubles with each

level in the tree. The algorithm terminates when the simulated dynamics experience a

momentum that points back toward the starting point of the simulation. The imprecise

nature of the numerical integration scheme requires that the proposed state be accepted

25

with an acceptance probability from the Metropolis update6. NUTS is implemented in a

number of probabilistic programming languages to enable automatic inference in complex

user-defined models. We use the Stan-MC7 (Carpenter et al., 2016) implementation of NUTS

for performing inference in the model defined in Section 2.4.3.

2.4.3 Algorithm for Posterior Inference of Switching State Space Models

Computing the posterior distributions over the latent variables in an SSSM corresponds to

approximating the joint distributions over X(m)
t , St and Φ(m), given the observation vector

Y. To perform inference over the regime parameters and the switch assignments of the

SSSM, we make two assumptions, which arise from the need to create human interpretable

descriptions of the complex system behavior. Assumption 1: the system advances through

a series of regimes, each regime is active for a period, and then switches to an entirely new

regime, one that has not been used before. Assumption 2: the regime remains active for the

maximum possible time for which it can be used to describe the period.

Without making these assumptions there are M possible assignments of regimes for each

time step, making a total of MT combinations of possible assignments, which is exponential

in the number of time steps. Moreover, in the worst case, the number of possible periods is

bounded by T with a switch at every time step. In contrast, under our assumptions, there

are only two possible assignments of regimes for each time step (i.e., the choice is to stay in

the current regime or to progress to the next regime), making for a total of 2M combinations

of possible assignments, where M is constant. The number of possible periods under this

methodology is bounded by M.

6If the Hamiltonian dynamics were simulated perfectly, there would be no need for this acceptance
check. But, because there is error in the numerical integration, we need to accept the proposed sample in the
same way that Metropolis accepts proposed samples.

7http://mc-stan.org/

26

Non-identifiability and Label Switching

A well known problem with MCMC inference in mixture models is that of identifiabil-

ity (Jasra et al., 2005). Models are non-identifiable when two sets of parameters can explain

the observed data equally well. This problem is also referred to as label switching as the

labels given to classes are unrelated to the class specific parameters. MCMC samplers

experience a random permutation of labels during sampling and the resulting posterior dis-

tribution is not class specific but rather multi-modal and identical to the marginal posteriors

for the individual classes.

This phenomenon can be seen in a simple Gaussian mixture model with means µ0, µ1

and covariances Σ0, Σ1. The marginal posterior distributions of the parameters are identical.

Figure 2.2 shows the posterior sample traces for the means from a one dimensional Gaussian

mixture model with true means µ1 = −1, µ2 = 1 and standard deviations σ1 = σ2 = 0.75.

The label switch can be clearly seen at samples indexed 1000 and 2000 respectively. The

smeared and bi-modal posterior distributions for the mean parameters are also clearly

evident. If the chain was not truncated (and if other MCMC chains were run), the posterior

distributions for µ0 and µ1 would be identical. A solution to the identifiability problem

is to add constraints on the model prior (e.g., enforcing µ0 > µ1) which makes the prior

not symmetrical. However, defining such constraints in higher-dimensional domains is

non-trivial.

Another possible solution for the identifiability problem is to provide labels for part of

the data. This is termed semi-supervised learning and we incorporate this solution into

our model. In the context of the CW domain, we can label observations as belonging to

one regime or another. Let St,t+1,...,t−1+K,t+K be a consecutive set of K state variables such

that St and St+K have known value assignments (regime m and regime m + 1, respectively).

The values for the state variables St+1,...,t−1+K are unknown. By Assumption 1, the switch

between regimes m and m + 1 occurs at some Sl where t ≤ l ≤ t + K. Therefore, the value

27

Figure 2.2: Posterior samples and associated density plot from the posterior of a Gaussian mixture model with
true parameters µ1 = −1, µ2 = 1, σ1 = σ2 = 0.75. Left shows the density plot for the posterior of the mean
parameters. Right shows the posterior sample trace. The label switches can be seen at samples 1000 and 2000
resulting in the multi-modal posterior on the left.

of Sl determines the values for all of the unknown states in this period as St is assigned to

regime m for t < l and it is assigned to regime m + 1 for t ≥ l.

Algorithm Sketch

We provide a sketch of this process in Algorithm 1. Step 1 initializes the M supervised

switch variables, one per regime. The labeled switch variables are spaced uniformly in time

and are assigned to regimes in increasing order according to Assumption 1. This uniform

method for initialization can be justified by Assumption 2, in that any set of regimes that

provides an interpretable model is sufficient. The number of expected time steps in each

period is K = T/M, and there are K− 2 unlabeled switch variables between each pair of

switch variables assigned to regimes.

Step 2 performs MCMC sampling to approximate the posterior of the model. For the

case when the value of the switch variable is known, the posterior of X(m)
t can be directly

sampled by following the structure of a state space model. In the case where the switch

variable is unknown, we have a marginalization problem over the two possible values of St.

For the hidden Markov model (HMM) structure this can be efficiently computed with the

28

forward algorithm (Shumway and Stoffer, 2000). To formulate the HMM forward algorithm,

we use the observation probabilities from the individual state space models in place of the

emission probabilities of a standard HMM. Here, πSi refers to the belief of the state of the

switching variable given the evidence up to that point in time.

Step 3 uses the regime specific parameters Φ(m) to make a maximum likelihood assign-

ment of an observation to a regime using the Viterbi algorithm, thereby specifying the value

of St∀t ∈ [1 : T].

Algorithm 1: Posterior inference algorithm
Input: M (number of regimes), Y (vector of observations for T time steps).

1 Initialization: Label one datapoint per regime, leaving T − (M + 1) unlabeled
datapoints.

2 MCMC Inference: Draw samples for X(m)
t from the posterior distribution defined by

the structured probability model:
for Yt in Y do

if St = m is known then
sample from P(X(m)

t , Φ(m) | Xt−1, St = m, Yt)
else

marginalize over St. Sample from
m
∑

i=m−1
πSi P(X(i)

t , Φ(i) | Xt−1, St = i, Yt)

3 Posterior Inference: Use the posterior for regime parameters (Φ(m)) to run a Viterbi
pass on the data Y to make a maximum likelihood assignment of the value of St to
regime m (thereby learning the switching variables St).

Output: St (assignments to regimes), Φ(m) (regime specific posterior distributions).

Algorithm 1 can be computed on any SSSM where Assumptions 1 and 2 are appropriate.

Such a model is shown in Figure 2.3. The model depicts a subset of the time series with K

time steps from time t to time t + K. There are two supervised labels at the boundaries of

the subset with the variable St assigned to regime m and variable St+K assigned to regime

m + 1. The unknown K− 2 states in between are marginalized over such that the regime

specific posteriors can still be approximated. This model is repeated for the M− 1 switches

in the data. The setup is flexible in that informative priors for the model noise and transition

matrices can be specified as required by domain knowledge.

29

Figure 2.3: Updated graphical model showing the semi-supervised switching labels, along with the choice of
only two chains between two semi-supervised points. This representation is repeated M− 1 times to describe
the M− 1 switches between the M regimes. Note that the labeled switch variables at the boundaries (St and
St+K) are shared between successive regimes.

30

Chapter 3

User Study

3.1 Empirical Validation

We evaluate two aspects of Algorithm 1. First, we show that it finds the true regime labels

in a synthetic dataset. Thereafter, we use data that were collected from Connected Worlds

to implement two experiments to test whether the inferred periods are interpretable to

independent human validators. The first of these experiments aims to verify the salience

of the inferred change points within the context of CW. The second experiment is to verify

the intelligibility of the automatically generated descriptions for the inferred periods. Due

to the tightly coupled relationship between the period boundaries and the regime specific

parameters, separating these two factors for comparison is exceedingly difficult. The two

user studies present two perspectives on the interpretability of the periods and the associated

regime parameters. The significant results suggest that the SSSM produces periods and

regimes descriptions that do have interpretabilty in the CW domain.

31

3.2 Verification of Regime Label Inference

X(1)
t = 0.99 Xt−1 + w(1)

t w(1)
t ∼ N (0, 1)

X(2)
t = 0.9 Xt−1 + w(2)

t w(2)
t ∼ N (0, 10)

Yt = StXt + vt vt ∼ N (0, 0.1)

(3.1)

Equation 3.1, an adapted model from Ghahramani and Hinton (2000), describes a SSSM

with two regimes and a continuous state space8. The transition parameters and noise are

regime dependent with A(1) = 0.99, A(2) = 0.9, Q(1) = 1 and Q(2) = 10. St is the

categorical switching variable that chooses between the two regimes at every time step.

The prior probability9 of each of the regimes is 0.5 and the transition probabilities are

Φ1,1 = Φ2,2 = 0.95 and Φ1,2 = Φ2,1 = 0.05. This model was used to generate 1000 time

series, each with 200 observations.

Figure 3.1 shows an example of a generated time series. The switch points are shown

according to the true model (top), the inferred labels from Algorithm 1 (middle) and the

Gaussian merging baseline (bottom). Each period is represented by a sequence of black and

gray colored circles. As shown in Figure 3.1, the periods inferred by both Algorithm 1 and

the baseline overlap to some extent with the true periods. However, there is substantially

more noise (higher frequency of switches) in the inferred periods of the baseline.

We ran Algorithm 1 to learn the switch points on this data, setting the number of regimes

to nine. The percent agreement between the inferred regime labels and the known labels

presents the accuracy for each algorithm for each time series. Figure 3.2 shows a histogram

of the algorithm accuracy according to Algorithm 1 (a) and the baseline Gaussian merging

(b). The bi-modal and long tailed distribution for the baseline approach demonstrates its

8The Ghahramani and Hinton (2000) model describes a state space that is disjoint at regime switches. We
choose to make the state space continuous at the switch points as this more accurately mimics the scenario that
is present in CW.

9P(S1 = 1) = p1 = P(S1 = 2) = p2 = 0.5

32

Figure 3.1: An example of a generated time series from the SSSM model of equation 3.1. The x axis represents
time, and the y axis shows the observations. Regime labels are shown as black and gray dots representing
the two label options. True labels (top) are compared to the inferred labels from Algorithm 1 (middle) and the
Gaussian merging (bottom).

Figure 3.2: Histogram of the percent of correctly inferred labels for the observed output. The structured
sampling Algorithm 1 (a) learns the regime labels more accurately than the uninitialized Gaussian merging
algorithm (b).

susceptibility to local optima. When this algorithm converges toward the correct labeling, it

finds a similar structure to that inferred by Algorithm 1. However, if the initialization of the

optimization (chosen randomly) is poor, this algorithm can easily result in labeling all of the

data as belonging to one regime or the other. The mean accuracy of Algorithm 1 was 89%,

materially higher than the 66% achieved by the Gaussian merging approach.

The superior performance of Algorithm 1 can be directly attributed to the switching

behavior that is enforced by Assumptions 1 and 2, which was not assumed by the baseline

model. Although Algorithm 1’s model structure encourages the discovery of switches, the

33

uniformly spaced initialization of labels should not be seen as an advantage as no prior

knowledge of the actual switches is used in performing this step. The justification for

enforcing a static number of switches is from Assumption 2 where the goal is to find more

stable regimes and thus a lower frequency of switches between regimes. An implementation

note is that although Algorithm 1 searches for 9 regimes in the data, we know that only two

are present. The presence of two regimes can be specified in the hierarchical structure of the

model such that each of the 9 regimes draws its parameters from only two options. The

number of regimes for the Gaussian merging approach is merely set to two.

3.3 Validation of Model Interpretability

The inference from Algorithm 1 aims to assist teachers when leading their students through

a review discussion of a particular simulation session. Thus we aim to validate that the

inferred switch points are interpretable to a human seeking to understand the “story” of

the simulation. The relative magnitudes of the inferred regime parameters are used to

generate a short description for the water flows for each period. The CW system provides

a video representation of the log positions and the resulting water flow in the simulation.

See Figure 1.1 for one frame from the video visualization that shows the biome positions,

a distribution of logs on the floor of the simulation and the resulting flow of water at

that time step. This video representation was presented to human validators to verify the

change points (presented in Section 3.3.1) that are found by Algorithm 1 and to verify the

intelligibility (presented in Section 3.3.3) of the automatically generated descriptions for the

inferred periods.

34

3.3.1 Experiment 1

We designed an experiment10 that asked evaluators to select one of three possible switch

points between every pair of consecutive periods. Evaluators saw a composite of 1) the

movie of the two periods; 2) a description of the dynamics of each of the two periods (e.g.,

“water flows to the Desert and Plains”) and 3) a set of three possible switch points between

the periods. The evaluator’s task was to choose the switch point that best matched the

change in dynamics between the two periods. One of the three switch points was that

inferred by Algorithm 1; the other two were random times sampled uniformly from the

beginning of the first period to the end of the second period with the constraint that any

two presented times cannot be within 10s of one another.

Evaluators worked with five sessions, each of which included 8 to 12 periods of system

dynamics. Selecting the correct switch point is not a trivial task: it requires distinguishing

between the changes in the system that indicate different dynamic regimes from the changes

that are noise within the same dynamic regime. We see an evaluator’s ability to choose

a switch point, based on the movie and a description of the two contiguous periods, as

evidence that the inferred periods are potentially useful to a teacher who wants to guide

students in constructing a causal description of their experience with the simulation.

3.3.2 Experiment 1 Results

Figure 3.3 presents the results of the validation using four evaluators with knowledge of the

CW domain. The five sessions are shown along the x-axis; the fraction of correctly selected

switch points is shown by the bin heights. The dashed line represents a random baseline

in which the selected switch probability corresponds to 1
3 . Under the null hypothesis, the

performance of an evaluator would not be significantly different than the random baseline.

10Available at http://essil-validation.s3-website-us-east-1.amazonaws.com/

35

Figure 3.3: Expert validation of five different test files from sessions with CW. The bar plot shows the fraction
of correctly identified switches between automatically identified periods.

The results indicate that the evaluators chose the switch point identified by Algorithm 1

significantly more often than the random baseline (p < 1× 10−4). This suggests that the

inferred switch points were interpretable as meaningful changes to the system dynamics.

The differences in interpretability seen in Figure 3.3 (e.g. Session 4 was more difficult to

interpret than Session 3) can provide a direction for further investigation in how to support

teachers and students in making sense of their experiences in CW. For example Appendix B

gives a brief investigation into the file and periods specific difficulties. In the Appendix

we discuss how the session complexity might require an adaptive choice for the number

of inferred regimes. Session 4 is dramatically more complex than Session 3 and thus we

may wish to introduce more periods to describe this additional complexity. We are also able

to investigate the factors that lead to poor regime descriptions. These are largely caused

by factors that are not considered by the model, such as rain events in the biomes. We

recommend that the system logs these events for the disambiguation of causes of system

changes.

36

3.3.3 Experiment 2

Experiment 2 aims to test the interpretability of the automatically generated regime descrip-

tions when presented alongside the associated period clip from the video representation

of the students’ work. Validators are asked to choose one of three plausible descriptions

for the dynamics that are displayed in the video clip of the period. Experiment 2 further

introduces a control condition where the change points in the time series are pre-defined

and the descriptions are generated, conditioned on the pre-defined change points.

Figure 3.4 shows a screen-shot of the visualization11 that the users are given. Label (1)

shows the video clip; this clip is played for the duration of an inferred period. Label (2)

indicates one of three descriptions that might be associated with the video clip. Validators

are asked to watch the video and select the description that most accurately describes the

dynamics in the video for the period. The dummy descriptions for each period are randomly

generated.

The control condition in this experiment is to compare the algorithmically inferred

period boundaries with boundaries that are uniformly spaced over the duration of the time

series. We return to the hypothesis that deconstructing the time series into smaller periods

will improve the period interpretability as the complexity of the period must decrease for

shorter period lengths. Allowing Algorithm 1 to define the period boundaries should assist

in finding periods that are more coherent for the associated descriptions. The algorithmically

inferred periods should therefore be easier to identify than the periods that are defined

uniformly across the time series.

The visualization (represented by the screen-shot in Figure 3.4) was shown to 40 inde-

pendent validators. Each participant had little or no prior knowledge about CW. A short

tutorial of 14 slides introduces the objective for validation and explains the key aspects of

11Available at https://essil-validation.herokuapp.com/

37

Fi
gu

re
3.

4:
Sc

re
en

-s
ho

t
of

th
e

us
er

in
te

rf
ac

e
de

si
gn

ed
to

ev
al

ua
te

th
e

in
te

rp
re

ta
bi

lit
y

of
A

lg
or

it
hm

1.
T

he
vi

de
o

re
pr

es
en

ta
ti

on
at

(1
)

is
pl

ay
ed

fo
r

th
e

du
ra

tio
n

of
th

e
pe

ri
od

.T
hr

ee
pl

au
si

bl
e

de
sc

ri
pt

io
ns

(o
fw

hi
ch

(2
)i

s
on

e
of

th
es

e)
ar

e
pr

es
en

te
d

an
d

th
e

va
lid

at
or

is
as

ke
d

to
se

le
ct

th
e

de
sc

ri
pt

io
n

th
at

be
st

de
sc

ri
be

s
th

e
dy

na
m

ic
s

sh
ow

n
in

th
e

vi
de

o.
In

th
is

ca
se

,D
es

cr
ip

tio
n

3
is

th
e

co
rr

ec
ts

ol
ut

io
n.

38

the video. The participants are shown 8 randomly selected periods from the control and the

test groups. The validators are required to watch the video associated with the period and

thereafter to select the description that most accurately describes the water dynamics. The

results from Experiment 2 are given in Section 3.3.4.

3.3.4 Experiment 2 Results

40 validators independently labeled 296 periods. The periods were generated from the same

5 session files that were presented in Section 3.3.1. The five files respectively had 12,8,8,8

and 10 inferred periods from Algorithm 1. The control condition was implemented with a

uniform period spacing with 8 periods and again with 5 periods in all 5 test files. Figure 3.5

shows the raw accuracy that was achieved for each file, under each algorithm. It can be seen

that increasing the number of periods increases the ability of the validators to select the

algorithmically generated periods. As the lengths of the periods decrease, there are fewer

dynamics in the corresponding video clip and therefore the period description should be

more recognizable to the validator.

The same general shape of the bar plots in Figures 3.5 and 3.3 suggests that the file

appears to affect the interpretabilty of the periods in a similar manner for both experiments.

This is intuitively correct as sessions where the system dynamics are more stable (possibly

due to students executing fewer actions or having a simpler goal) might make for simpler

and more easily understood descriptions. However, in cases where there are possibly many

conflicting student agendas, the resulting dynamics might be complex and hard to interpret.

3.3.5 Analysis of Results for Experiment 2

Noting that the interpretability of the periods is file specific, we design a logistic regression

analysis of the results. Specifically, a hierarchical logistic regression was conducted to

39

Figure 3.5: Bar plot of the results from Experiment 2. There are 5 files that were tested. The fraction of
correctly selected period descriptions from Algorithm 1 is compared to that from the control conditions. The
control conditions include uniformly spaced periods for 8 and 5 periods respectively.

determine the effect of the different algorithms on the probability that a validator successfully

chooses the given algorithm’s generated description. We compare the effects of seeing

periods and descriptions from Algorithm 1 and the control with 8 periods (Uniform8) to the

baseline of the control with 5 periods (Uniform5).

The graphical model for the hierarchical logistic regression is presented in Figure 3.6. µ f

refers to a file specific ‘ease of labeling’. The Algorithm 1 and Uniform8 ‘interpretability

effects’ are added to the file specific parameter. Period specific parameters are drawn from a

normal prior distribution with mean defined by the file parameter added to the effect of the

algorithm used. Each period specific parameter pi represents the log-odds of a successful

outcome in a Bernoulli trial. Note that the period specific parameters pi depend on the mean

defined by the file and the algorithm that was used to generate the period. The variance

around the file-algorithm mean is defined by the parameter σ, shared among all periods.

σ is an unknown model parameter and thus we place a weakly informative half-N (0, 1)

prior on this parameter. We conduct inference over the algorithm interpretability effect

parameters (αa) and the period specific log-odds parameters (presented in Appendix B).

40

Figure 3.6: Graphical model for the hierarchical logistic regression that is conducted to determine the
interpretability effect of Algorithm 1 and Uniform8 over the base Uniform5 condition. The observed data y
corresponds to a Bernoulli trial where a description is selected to match a video clip or not. A given trial has a
period specific probability of being chosen correctly pi. pi, in turn, depends on the file’s ease of labeling and the
algorithm effect. The αa parameters represent the effect of the algorithm on the probability of correctly selecting
the appropriate description. The periods depend on the file and algorithm means by a global variance parameter
σ.

41

yi,k | pi ∼ Bern(logit−1(pi))

pi | µ f , αa, σ ∼ N (µ f + 1{a}αa, σ)

µ f ∼ N (0, 1)

σ ∼ half-N (0, 1)

(3.2)

The generative sampling distributions are given in equation 3.2. The inverse logit

function is used to map the real valued log-odds parameter pi to a probability between

0 and 1. αa refers to the algorithm specific interpretability effect, with α1, the parameter

associated with using Algorithm 1 and α2, the parameter associated with using Uniform8

to generate the period. 1{a} is the indicator that algorithm a was used to produce the

description and define the duration for period i.

The mean posterior value for α1 = 2.03 with a Bayesian 95% posterior confidence interval

of [1.18, 2.96]. The value is quoted in log-odds and corresponds approximately to being

∼ 8 times more likely that a validator will select a period correctly under Algorithm 1 than

under the baseline Uniform5. This is a highly significant result suggesting that Algorithm 1

improves on the baseline Uniform5. The control group with 8 uniformly spaced periods

has a posterior mean α2 = 1.28 (multiplicative effect of ∼ 4 times more likely to select the

period correctly over Uniform5) with a posterior confidence interval of [0.43, 2.21]. This

too does not include 0, the expected value for no discernible improvement, and therefore

suggests that merely increasing the number of periods does help to make the periods

more interpretable. However, Algorithm 1 can be compared to Uniform8 by evaluating the

probability P(α1 > α2). In other words, we are interested in the probability that Algorithm 1

is associated with a greater probability of choosing the generated description. This posterior

probability is significant with a p-value of p = 0.04. The results suggest that the presented

Algorithm 1 significantly improves the interpretability of the generated descriptions.

The structure of the inference executed in section 3.3.4 allows us to consider the posterior

42

probability of pi for each of the presented periods. This discussion is given in Appendix B.

43

Chapter 4

Future Work and Conclusion

4.1 Future Work

There are two areas to be considered for future work. Firstly, Algorithm 1 assumes a known

number of regimes. This is problematic in that sessions of different lengths or complexities

would naturally have a different number of periods. It is not clear how to choose this

number for a given session yet, as was seen in Section 3.3.3, it can have a major effect

on the algorithm output. Bayesian non-parametrics presents a technique for remaining

agnostic about the number of regimes to search for. Section 4.1.1 reviews related work in

Bayesian non-parametrics for HMMs and we motivate why these models are promising for

this domain. In Section 4.1.2 we discuss the future work that builds on this thesis with the

aim of working towards our original goal of presenting a tool that assists teachers when

reviewing sessions from Connected Worlds.

44

4.1.1 Bayesian Non-parametric Learning for the SSSM

Introduction to Hierarchical Dirichlet Process

The Dirichlet process (DP) (Ferguson, 1973) defines a distribution over probability measures

on a parameter space Θ. It is parameterized by G0, a base distribution, and α, a concentration

parameter. The DP consists of discrete atoms that are distributed on the base measure G0

with mass that depends on α.

G | G0, α =
∞

∑
k=1

βkδθk

θk ∼ G0

(4.1)

δ in equation 4.1, refers to the Kronecker delta function and represents the atoms of G that

are distributed according to θk ∼ G0. The atoms have mass βk, where β ∼ GEM(α) (Neal,

2000). Note that the Dirichlet process consists of infinitely many atoms; the term Bayesian

non-parametrics stems from this countably infinite number of parameters. The DP can be

used to model a countably infinite number of mixtures in a mixture model. Here each θk

describes the parameters associated with mixture component k and this component has a

mixture weight given by βk.

The Chinese Restaurant Process (CRP) (Neal, 2000; Gershman and Blei, 2012), is an

abstraction of the DP. It marginalizes over the probability associated with an atom and

instead presents the DP in terms of the clusters that are formed. The CRP imagines a

restaurant with an infinite number of tables, tables being the components in the mixture

model. Customers (data) arrive at the restaurant and choose a table with probability

proportional to the number of customers already at that table, or choose a new table with

probability proportional to α. As more customers enter the restaurant, more tables are

45

chosen with:

E[Nt] = α log(Nc) (4.2)

Nt and Nc refer to the number of tables and customers respectively (Gershman and Blei,

2012). The number of components is random and grows as new data are observed. It is

important to understand that while conceptually, and for the generative model, there are

an infinite number of components, in practice a finite dataset exhibits a finite number of

clusters (only a finite number of tables can have customers seated at them) (Blei et al., 2006).

The hierarchical Dirichlet process (HDP) extends equation 4.1 by placing a Dirichlet

process prior on many group specific Dirichlet processes (Teh et al., 2005). The associated

abstraction is the Chinese Restaurant Franchise (CRF) where restaurants may have menus

that offer the same dish, but may also have dishes that are restaurant specific. This allows

restaurants to assign different mass to table clusters where the customers still have the

same dish. Now customers choose a restaurant in a franchise and choose a dish from the

restaurant of choice. The HDP draws G0 from a Dirichlet process DP(γ, H), and it draws

group (restaurant) specific distributions Gj ∼ DP(α, G0). The base measure G0 acts as the

expected value for encoding the frequency of each global, shared parameter (Fox et al., 2007).

E[Gj | G0] = G0 (4.3)

Hierarchical Dirichlet Process for Hidden Markov Models

We may wish to use the HDP as the clustering prior to infer the parameters and transition

probabilities in a HMM. We assume an unknown number of regimes and thus model this

with a DP prior. Simply using a DP prior is insufficient for modeling HMM dynamics as

the DP would place a static probability on observing the next state Xt | Xt−1 for all possible

Xt−1 which is clearly not the case for the HMM. The transition to state Xt from Xt−1 must

depend on state specific probabilities πXt−1 and not some global partition prior π. The

46

HMM therefore involves a set of mixture models that each depend on a specific state. The

state indexes a row of the transition matrix, where the probabilities in this row correspond

to the mixing proportions for the choice of the next state. We therefore encode this state

(regime) dependent transition by using the HDP which still encourages shared structure

between the individual transitions. Now each regime m might have its specific transition

probabilities πm but the different regimes might share the affinity to transition to certain

‘dominant’ regimes.

Fox et al. (2009, 2007) discuss problems with the HDP approach. The HDP-HMM

inadequately models the temporal persistence of states. Each state is allowed to have a

unique transition mixture, with mass shared among states for certain transitions that are

more probable. However, it is impossible to encourage self transitions with simply the

base hierarchical parameter H. The result is that the HDP-HMM exhibits a rapid inferred

switching from one state to the next (Fox et al., 2007). Rather, if we introduce a higher

probability of a self transition, we encourage the HMM to have an affinity for remaining

in any given regime for a greater length of time. This directly ties to Assumption 2 in

Section 2.4.

The adjustment to the HDP-HMM that Fox et al. (2009, 2007) propose is to add a

self-transition affinity parameter κ. The resulting model is termed the sticky hierarchical

Dirichlet process for hidden Markov models (sticky HDP HMM). Inference is performed

using a modified Gibbs sampler for the HDP (Teh et al., 2005). This model presents an

attractive alternative to Algorithm 1 as the number of regimes is not pre-defined and more

importantly, the model specification allows the growth of the number of regimes with the

length and/or complexity of the data. This captures the intuitive reality of the simulation

more accurately in that we would want more regimes to describe longer and more complex

sessions.

An avenue for the extension of the Fox et al. (2009) model is to encourage the linear

growth of the number of regimes with the length of a given session. The Pitman-Yor

47

process (Pitman and Yor, 1997) extends the DP for linear growth of clusters (not logarithmic

as presented above). Blunsom and Cohn (2011) have applied this concept to develop the

hierarchical Pitman-Yor process HMM. It seems natural to extend these models to include

the regime affinity parameter κ from Fox et al. (2007, 2009).

4.1.2 The SSSM as an Assistive Classroom Tool

With the introduction of rich and complex learning environments, we should remain aware

that these simulations pose challenges for teachers who wish to structure learning around a

class’s session. These teachers may require additional tools to assist them with the domain

specific challenges that arise when designing lesson plans around sessions with these

simulations. In Section 1.2, we discussed how it is hard for a participant or observer to

track the state of the CW simulation. It is therefore also challenging to identify the salient

learning opportunities that arise from the students’ interactions with the simulation. In

addition to this, standard evaluation metrics might not be available for activities engendered

by these complex simulations. The investigation of how to integrate these tools into the

class is therefore of paramount importance.

Section 3.1 presents a study that demonstrates how the SSSM is used to decompose a

large session from CW into small periods that individually are interpretable. This thesis has

focused mainly on the time series data itself and has presented techniques for modeling the

effects of students’ actions on the system state. Future work will investigate the application

of these models for producing an assistive system for implementation in the classroom. An

investigation into the techniques for presenting a meaningful, holistic picture of the session

remains for future studies.

The design of classroom assistive tools should focus on what information they present

to the students as well as how they present the information. We propose two principles for

choosing information that is relevant to present to students and teachers:

48

• Personal salience: includes scenarios from the simulation experience that are likely to

be memorable for the students.

• Explanatory coherence: includes a subset of the simulation’s causal chains that enables

students’ discussion of an aspect of the underlying explanatory model.

The work in this thesis has focused solely on the explanatory coherence topics. A full

assistive model will not only include information that describes system dynamics and

changes to the system state, but it will also highlight key elements from the simulation that

will be important to the individual students. The proposed future work involves designing,

implementing and testing this classroom tool.

Another exciting avenue for future research involves exploring the trade-off that is made

between the predictive power of a model and the explanatory coherence that the model

achieves. Wu et al. (2017) have suggested a method for regularizing deep learning models to

facilitate people’s understanding of their predictions. This is an important balance to review

and one that we intend to consider in educational settings.

4.2 Conclusion

This thesis has made three contributions. Firstly, we have recognized that complex ex-

ploratory learning environments might require assistive tools to help teachers and students

review meaningful information from a given interaction session. This novel research has

studied the possibilities for extracting information from the log files of an exploratory learn-

ing environment. We used the Connected World simulation as a test case and represented

the log data as a time series. It was our hypothesis that a time series can be decomposed into

shorter periods that are individually more interpretable and manageable than the session as

a whole.

49

Secondly, we have applied switching state space models to the task of decomposing

the time series into these shorter and individually coherent periods. Our work has built

upon previous time series analysis tools and presents an algorithm for learning the change

points and regime parameters that are associated with the switching state space model. We

have further conducted a survey of possible future work in Bayesian non-parametrics for

allowing the data to influence the number of regimes that are inferred in a given session. A

flexible number of regimes is especially appealing for a setting such as Connected Worlds

where the sessions vary dramatically in length and complexity.

Lastly, we have designed two user-based experiments that test the intelligibility and

change point relevance of the model output. The human interpretability of the model was

the ultimate goal of this investigation. However, evaluating the different aspects of the

model (‘learning’ vs ‘quantification’) was a challenging task. Our experiments suggest

that the model not only finds a good representation of the periods that might be present

in Connected Worlds, but that it also summarizes each period (of about 30 seconds) into

a brief two to three lines of text. The text conceptually captures much of the dynamics

of an associated video representation of the period. Between the two studies, we show

that it is possible to simplify a complex time series into periods of activity that are human

interpretable.

We have left the design and implementation of a classroom tool as future work. This

tool should aim to interactively support teachers and students for post session reviews. This

work presents exciting new possibilities for classroom artificial intelligence tools that can

support learning in these rich and immersive exploration environments.

50

References

Attias, H. (2000). A variational baysian framework for graphical models. In Advances in
neural information processing systems, pp. 209–215.

Bar-Shalom, Y. and Li, X.-R. (1993). Estimation and tracking- principles, techniques, and
software. Norwood, MA: Artech House, Inc, 1993.

Blei, D. M., Jordan, M. I. et al. (2006). Variational inference for dirichlet process mixtures.
Bayesian analysis, 1 (1), 121–143.

—, Ng, A. Y. and Jordan, M. I. (2003). Latent dirichlet allocation. Journal of machine Learning
research, 3 (Jan), 993–1022.

Blunsom, P. and Cohn, T. (2011). A hierarchical pitman-yor process hmm for unsupervised
part of speech induction. In Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies-Volume 1, Association for Compu-
tational Linguistics, pp. 865–874.

Cappé, O., Moulines, E. and Rydén, T. (2009). Inference in hidden markov models. In
Proceedings of EUSFLAT Conference, pp. 14–16.

Carpenter, B., Gelman, A., Hoffman, M., Lee, D., Goodrich, B., Betancourt, M.,
Brubaker, M. A., Guo, J., Li, P., Riddell, A. et al. (2016). Stan: A probabilistic program-
ming language. Journal of Statistical Software, 20 (2), 1–37.

Esling, P. and Agon, C. (2012). Time-series data mining. ACM Computing Surveys (CSUR),
45 (1), 12.

Ferguson, T. S. (1973). A bayesian analysis of some nonparametric problems. The annals of
statistics, pp. 209–230.

Forney, G. D. (1973). The viterbi algorithm. Proceedings of the IEEE, 61 (3), 268–278.

Fox, E., Sudderth, E. B., Jordan, M. I. and Willsky, A. S. (2009). Nonparametric bayesian
learning of switching linear dynamical systems. In Advances in Neural Information Processing
Systems, pp. 457–464.

Fox, E. B., Sudderth, E. B. and Willsky, A. S. (2007). Hierarchical dirichlet processes for
tracking maneuvering targets. In Information Fusion, 2007 10th International Conference on,
IEEE, pp. 1–8.

51

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A. and Rubin, D. B. (2014).
Bayesian data analysis, vol. 2. CRC press Boca Raton, FL.

Gershman, S. J. and Blei, D. M. (2012). A tutorial on bayesian nonparametric models.
Journal of Mathematical Psychology, 56 (1), 1–12.

Ghahramani, Z. (2001). An introduction to hidden markov models and bayesian networks.
International journal of pattern recognition and artificial intelligence, 15 (01), 9–42.

— and Hinton, G. E. (2000). Variational learning for switching state-space models. Neural
computation, 12 (4), 831–864.

Giordani, P., Kohn, R. and van Dijk, D. (2007). A unified approach to nonlinearity,
structural change, and outliers. Journal of Econometrics, 137 (1), 112–133.

Hoffman, M. D. and Gelman, A. (2014). The no-u-turn sampler: adaptively setting path
lengths in hamiltonian monte carlo. Journal of Machine Learning Research, 15 (1), 1593–1623.

Horst, B. and Abraham, K. (2004). Data mining in time series databases, vol. 57. World
scientific.

Ikoma, N., Higuchi, T. and Maeda, H. (2002). Tracking of maneuvering target by using
switching structure and heavy-tailed distribution with particle filter method. In Control
Applications, 2002. Proceedings of the 2002 International Conference on, IEEE, vol. 2, pp.
1282–1287.

Jasra, A., Holmes, C. C. and Stephens, D. A. (2005). Markov chain monte carlo methods
and the label switching problem in bayesian mixture modeling. Statistical Science, pp.
50–67.

Jonsen, I. D., Myers, R. A. and James, M. C. (2007). Identifying leatherback turtle foraging
behaviour from satellite telemetry using a switching state-space model. Marine Ecology
Progress Series, 337, 255–264.

Kim, C.-J. (1994). Dynamic linear models with markov-switching. Journal of Econometrics,
60 (1-2), 1–22.

—, Nelson, C. R. et al. (1999). State-space models with regime switching: classical and
gibbs-sampling approaches with applications. MIT Press Books, 1.

Li, X. R. and Jilkov, V. P. (2003). Survey of maneuvering target tracking. part i. dynamic
models. IEEE Transactions on aerospace and electronic systems, 39 (4), 1333–1364.

MacKay, D. J. (1998). Introduction to monte carlo methods. In Learning in graphical models,
Springer, pp. 175–204.

Murphy, K. P. and Russell, S. (2002). Dynamic bayesian networks: representation, inference
and learning.

Nasrabadi, N. M. (2007). Pattern recognition and machine learning. Journal of electronic
imaging, 16 (4), 049901.

52

Neal, R. M. (2000). Markov chain sampling methods for dirichlet process mixture models.
Journal of computational and graphical statistics, 9 (2), 249–265.

— (2003). Slice sampling. Annals of statistics, pp. 705–741.

— et al. (2011). Mcmc using hamiltonian dynamics. Handbook of Markov Chain Monte Carlo,
2 (11).

Oh, S. M., Rehg, J. M., Balch, T. and Dellaert, F. (2008). Learning and inferring motion
patterns using parametric segmental switching linear dynamic systems. International
Journal of Computer Vision, 77 (1-3), 103–124.

Patel, P., Keogh, E., Lin, J. and Lonardi, S. (2002). Mining motifs in massive time series
databases. In Data Mining, 2002. ICDM 2003. Proceedings. 2002 IEEE International Conference
on, IEEE, pp. 370–377.

Pavlovic, V., Rehg, J. M. and MacCormick, J. (2001). Learning switching linear models of
human motion. In Advances in neural information processing systems, pp. 981–987.

Pitman, J. and Yor, M. (1997). The two-parameter poisson-dirichlet distribution derived
from a stable subordinator. The Annals of Probability, pp. 855–900.

Preston, D., Protopapas, P. and Brodley, C. (2009). Event discovery in time series. In
Proceedings of the 2009 SIAM International Conference on Data Mining, SIAM, pp. 61–72.

Saul, L. K., Jaakkola, T. and Jordan, M. I. (1996). Mean field theory for sigmoid belief
networks. Journal of artificial intelligence research, 4, 61–76.

— and Jordan, M. I. (1996). Exploiting tractable substructures in intractable networks. In
Advances in neural information processing systems, pp. 486–492.

Shumway, R. H. and Stoffer, D. S. (1991). Dynamic linear models with switching. Journal of
the American Statistical Association, 86 (415), 763–769.

— and — (2000). Time series analysis and its applications. Studies In Informatics And Control,
9 (4), 375–376.

Smørdal, O., Slotta, J., Moher, T., Lui, M. and Jornet, A. (2012). Hybrid
spaces for science learning: New demands and opportunities for research. In In-
ternational Conference of the Learning Sciences. Sydney, Australia. http://www. uv. uio.
no/intermedia/english/research/projects/miracle/news/pdf/ICLS 2012 Symposium Hybrid_Spaces.
pdf.

Tanaka, Y., Iwamoto, K. and Uehara, K. (2005). Discovery of time-series motif from
multi-dimensional data based on mdl principle. Machine Learning, 58 (2-3), 269–300.

Teh, Y. W., Jordan, M. I., Beal, M. J. and Blei, D. M. (2005). Sharing clusters among
related groups: Hierarchical dirichlet processes. In Advances in neural information processing
systems, pp. 1385–1392.

53

Turner, R. E. and Sahani, M. (2011). Two problems with variational expectation maximisa-
tion for time-series models. Bayesian Time series models, 1 (3.1), 3–1.

Vlachos, M., Lin, J., Keogh, E. and Gunopulos, D. (2003). A wavelet-based anytime
algorithm for k-means clustering of time series. In In Proc. Workshop on Clustering High
Dimensionality Data and Its Applications, Citeseer.

Whiteley, N., Andrieu, C. and Doucet, A. (2010). Efficient bayesian inference for switching
state-space models using discrete particle markov chain monte carlo methods. arXiv
preprint arXiv:1011.2437.

Wu, M., Hughes, M. C., Parbhoo, S., Zazzi, M., Roth, V. and Doshi-Velez, F. (2017).
Beyond sparsity: Tree regularization of deep models for interpretability. arXiv preprint
arXiv:1711.06178.

54

Appendix A

Plant and Animal Relations

For completeness, we have included a map to highlight the relationships between the plants

and animals in Connected Worlds. Students plant trees and observe the arrival of animals

that use the trees to support their habitat. Mimicking a real-world scenario, the fauna for

a biome depend on the flora, and the flora are unique for a specific biome. Larger and

higher level plants require the presence of smaller and lower level plants. Figure A.1 shows

a schematic that displays the plant and animal relations of Connected Worlds.

55

Figure A.1: Map of the relationships between plants, animals and biomes in the CW environment. The biomes
are shown in yellow. The blue boxes correspond to areas of the simulation that do support animals but do not
have plants that grow there. The fauna-flora specific relations can clearly be seen by the arrows that link the
plants (green ovals) and animals (red ovals). The plants and animals are endemic to their biome.

56

Appendix B

Posterior Probability of Correct Period

Selection

Figure B.1 presents a visualization of the period boundaries for the 5 sessions that were

studied in the text. The x-axis corresponds to time and the y-axis shows the algorithm

that was used to generate the boundaries. The vertical yellow lines indicate the inferred

period boundaries; a period exists between two yellow boundaries. The periods are labeled

sequentially for reference in this discussion. Finally, the color of the period indicates

the posterior probability that a human validator will select the algorithmically generated

description for that period. Light blue corresponds to a low probability of the algorithmic

description being correctly chosen and dark blue or black corresponds to a high probability.

In general we note that the Algorithm 1 periods are darker than the periods of Uniform8;

the Uniform8 periods are darker than the periods for Uniform5. We also note that when the

period boundaries line up entirely (between different algorithms), the period colors tend to

be very similar (refer to Session 1, Algorithm 1, period 12 and Session 1, Uniform8, period 8 for

one such example). The file difficulty variability is seen with Session 3 being the darkest

57

Figure B.1: Diagram to represent the periods that are inferred by Algorithm 1 in comparison to those defined
by Uniform5 and Uniform8. The vertical yellow lines denote the period boundaries and the color of the period
presents the posterior probability that an external validator will select the text description that is generated by
the algorithm. Dark colors correspond to high probability for being selected and light colors correspond to a low
probability.

58

(a) frame 1 (41s) (b) frame 2 (44s) (c) frame 3 (47s) (d) frame 4 (50s)

Figure B.2: Sequence of 4 snapshots from the video given to validators (each frame is 3 seconds apart). The
logs are moved in frames 1 and 2 such that the water is mostly flowing to the Plains and Jungle in frames 3
and 4 and afterwards.

(easiest) and Sessions 4 and 5 being the lightest on average (i.e., for these two sessions, it

was the most difficult to select the algorithm’s generated description).

It is interesting to investigate some specific aspects of this visualization. Starting with

Session 1, Algorithm 1 has a slightly darker period 1 than the other algorithms. Uniform8

and Algorithm 1 both present the description that “Water is mostly flowing to the Wetlands,

Jungle and Plains”. Uniform5 describes the longer period as water mostly flowing to

the “Jungle, Wetlands and Plains” and so these are all similar. The dummy choices are

reasonable in all three cases with one example being: “Water is mostly flowing to the Plains,

Jungle and Wetlands”. At time t = 44s, the end boundary for Algorithm 1, period 1, the

students position the logs to direct a substantial amount of water to the Jungle and to the

Plains. Algorithm 1 correctly detected this change and defined a new period 2. In the

other algorithms, as period 1 was extended into this dominant Jungle/Plains dynamic,

the descriptions became more difficult to choose from (hence the lowest probability for

a successful choice is seen in Uniform5). Figure B.2 shows four snapshots around the

44s change point where after 44s, the water mainly flows to the Jungle and the Plains. It

qualitatively seems natural to have a change point at this time.

Session 5, Algorithm 1, has light periods 7 and 9 interspersed by darker periods. For

both of these periods, the Algorithm 1 description is misleading. The ordering of the

parameters conveys a hierarchical structure to the message that is being conveyed. This is

not always correct. In both of these cases, the parameters were actually similar in magnitude

59

and thus the strict ordering of the description may have been misleading. In Section 4.1.2,

we discuss how future work will entail correctly compiling the available information to

design an assistive aid for teachers. Making decisions regarding how the data are presented

will certainly form an important aspect of this work.

A final point that can be made from this session is that the rain events of the system are

poorly identified by the algorithm and can thus lead to misleading descriptions that are

generated. It remains a challenge to find a robust way for dealing with rain events. The

simplest recommendation is to add these events to the log files that are stored as part of the

output from CW.

60

