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ABSTRACT
Simulations that combine real world components with inter-
active digital media provide a rich setting for students with
the potential to assist knowledge building and understand-
ing of complex physical processes. This paper addresses the
problem of modeling the effects of multiple students’ simul-
taneous interactions on the complex and exploratory envi-
ronments such simulations provide. We work towards assist-
ing educators with the difficult task of interpreting student
exploration. We represent the system dynamics that result
from student actions with a complex time series and use
switch based models to decompose the time series into indi-
vidual periods that target interpretability for teachers. The
model learns the transition points between successive peri-
ods in the time series as well as the internal dynamics that
govern each period. This model differs from other switch
based models in that it decomposes the time series in a way
that is human interpretable. This approach was applied to
data that was obtained from an existing multi-person simu-
lation with pedagogical goals of teaching sustainability and
systems thinking. A visualization of the model was designed
to validate the interpretability of the generated text-based
descriptions when compared to a movie representation of the
system dynamics. A pilot study using this visualization indi-
cates that the switch based model finds relevant boundaries
between salient periods of student work.
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1. INTRODUCTION
Complex systems simulations are becoming increasingly com-
mon in formal and informal STEM learning environments [21].
These simulations present scientific phenomena in a manner

that bridges principles of science and the firsthand experi-
ence of emergent, real-world outcomes. However, the open-
ended and exploratory nature of these simulations presents
challenges to teachers’ understanding of students’ learning.
Students’ actions have immediate and long-term effects on
the simulation leading to a rich array of emergent outcomes.
Teachers may wish to discuss students’ interactions to high-
light salient learning opportunities, but if there are too many
“moving parts” to the simulation, this becomes a challenging
ideal.

This paper describes an automatic method for extracting
salient periods from the log files that are generated by com-
plex exploratory learning environments (ELE). Our goal is
to generate relevant summaries of the system dynamics such
that teachers can effectively engage students in discussions
that stem from their own experiences with the simulations.
We study an application of Switching State Space Mod-
els (SSSM) to the task of extracting salient periods from
a mixed reality ELE, Connected Worlds, installed at the
New York Hall of Science (NYSci). SSSMs [7] are a class of
model for time-series data where the parameters controlling
a linear dynamic system switch according to a discrete la-
tent process. These models have seen use in a wide variety
of domains including control [11], statistics [2], economet-
rics [8] and signal processing [14]. SSSMs combine hidden
Markov and state space models to capture regime switch-
ing in non-linear, continuous valued time series [22]. The
intuition is that a system evolves over time but may un-
dergo a regime change that results in an intrinsic shift in
the system’s characteristics. Allowing for discrete points in
time where the dynamics change, enhances the power of the
simple linear models to capture more complicated dynam-
ics. We propose that regime switching models also help to
increase the interpretability of large and complex systems
by automatically segmenting a time series into regions of
approximately uniform dynamics. The result is that a com-
plex session is broken into smaller periods that are more
readily understood upon reflection on the session.

In this paper we introduce the Connected Worlds ELE and
explain why teachers might need assistance when leading a
discussion with the students where they reflect upon their
actions. We expound on the SSSM and propose a method
for decomposing a complex time series into smaller periods
aiming to assist teachers when reflecting on a session with
a class. We lastly present results showing the efficacy of



Figure 1: Bird’s eye snapshot view taken from
the movie representation of the CW environment.
Biomes are labeled on the perimeter and logs appear
as thick red lines. Water enters via the waterfall and
in this image it mainly flows toward the desert and
the plains.

our approach on both synthetic data and on data collected
from CW. The CW validation is a preliminary study with
significant results which suggest that the model output is
human interpretable.

2. CONNECTED WORLDS
Connected Worlds1 (CW) is a multi-person ecology simula-
tion with the goal of teaching students about complex sys-
tems and systems thinking. It consists of an immersive en-
vironment comprising four interconnected biomes connected
by a central flow of water that is fed by a waterfall. The sim-
ulation exhibits large scale feedback loops and presents the
opportunity for participants to experience how their actions
can have (often unintended) effects that are significantly re-
moved in time and-or space. Students plant trees which
flourish or die, animals arrive or depart, and rain clouds
form, move through the sky and deposit rain into the wa-
terfall.

Students interact with CW by positioning logs to control the
direction of the water that flows in the simulation. Water
can be directed to each of the four biomes (desert, plains,
jungle, wetlands) and the distribution of flowing water de-
pends on the placement of the logs. Water enters the simu-
lation in two ways. The students can actively release water
into the system from the stored water in the reservoir. Rain-
fall events are out of the students’ control and these release
water into the waterfall (to replenish the primary source of
water) and into the individual biomes.

Figure 1 shows a bird’s eye snapshot view of the state of
the simulation in CW. The nature of the simulation is com-
plex on a variety of dimensions. The simulation involves a
large number of students simultaneously executing actions
that change the state of the simulated environment. No one
person - including the teacher or interpreter - can possibly
follow what happens, even in a relatively short simulation.
Each participant will have a different view of what tran-

1https://nysci.org/home/exhibits/connected-worlds/

spired, depending on the actions s/he took and the state
changes that resulted. Thus it is important to develop tools
that can support teachers’ understanding of the effects of
students’ interactions in complex ELEs such as CW.

3. RELATED WORK
This work is related to two separate strands of research:
studying students’ interactions in mixed reality ELEs, and
modeling complex systems using switching models.

There is increasing evidence of the value of multi-person par-
ticipatory simulations for engaging learners with complex
science topics [9, 1, 23]. Research has explored classroom-
scale participatory simulations where students play active
roles in the simulation. Some examples include topics in dis-
ease transmission [3] and human body systems [12]. Other
work has placed students in the role of scientists experiment-
ing with simulated ecosystems [17, 4]. Within all of these
examples, learners both engaged directly with the simulation
during enactment, and reflected on their actions afterward
to better understand how their choices resulted in observed
system outcomes. Research has shown that using data ob-
tained from students’ own performances has the potential
to engage them more effectively than presenting them with
the results of an abstract simulation [16, 15]. Building on
this work, our eventual goal is to provide assistive tools for
teachers to further enhance the pedagogical impact that such
ELEs can achieve.

Much work has been completed in the field of mining mean-
ingful knowledge from time series data [5, 10, 19]. Ghahra-
mani and Hinton [7] introduce and give a detailed presenta-
tion of the SSSM. We adapt this model to the special struc-
ture that is inherent in CW. Cappé et al. [2] and Giordani
et al. [8] use switching models to capture non-linear behav-
ior in a time series. SSSMs have been effectively applied
in object tracking domains where it is necessary to predict
the trajectory of various objects. Whiteley et al. [22] intro-
duce a sequential Monte Carlo algorithm for inference over
switching state space models using discrete particle filters.
We present a new avenue of study in which SSSM models
are used to describe complex time series in a way that can
be easily interpreted by people.

4. SWITCHING STATE SPACE MODELS
SSSMs are commonly used to describe time series2 with non-
linear dynamics in econometrics and signal processing appli-
cations [8, 14]. A SSSM includes M latent continuous valued
state space models and a discrete valued switching variable.
Each of the models, which we refer to as regimes, have their
own dynamics. At each point in time, the switching variable
selects one of the individual state-space models to generate
an observation vector.

The SSSM is formalized as:

X
(m)
t = Φ(m)X

(m)
t−1 + w

(m)
t

Yt = StA
(m)X

(m)
t + vt

(1)

Here, X
(m)
t denotes the latent continuous valued state for

2Refer to Shumway and Stoffer [20] for a detailed discussion
of time series analysis models.



Figure 2: Graphical model for the switching-state
space model. A latent discrete switching variable
(St) selects an active, continuous state space model

(X
(m)
t ). The observation vector (Yt) depends on the

active regime at time t.

regime m at time t. St is a switching variable that selects
the mth regime such that regime m at time t produces ob-

servation vector Yt, which depends on the latent state X
(m)
t .

The states X
(m)
t evolve over time in a way that depends on

the transition matrix Φ(m) and the previous state Xt−1. Fig-
ure 2 presents a graphical representation of an SSSM. Edges
between variables represent stochastic casual relationships.
Not shown in the figure are the regime dependent transition

noise w
(m)
t and the observation noise vt. A

(m) is the output
matrix in the state space formulation, set to identity matrix
I in our case.

We illustrate how an SSSM can describe the effects of stu-
dents’ interactions in CW. Yt represents the observed water

level in the different areas of the simulation at time t. X
(m)
t

describes the expected levels of water under regime m at
time t. Φ(m) controls the water flow in the simulation ac-
cording to the transitions in regime m. St selects which of
the regimes to use to describe the water level Yt.

Importantly, a single regime is insufficient for modeling the
effects of students’ interactions with CW. This is because
students’ actions have a complex impact on the system dy-
namics. We therefore need to define multiple regimes, where
each regime describes a series of events that can be (stochas-
tically) explained by the regime dynamics. A regime is ac-
tive for a duration of time in CW; we call this duration a
period. For example, in one period water is mainly flowing
to the plains and to the desert (as is shown in figure 1). In
the next period, students move the logs to re-route water
flow to the wetlands potentially because plant life is dying.
Each of these periods might be active for different durations
and their dynamics are described by different regimes.

4.1 Exploiting Model Structure
We aim to perform inference over the latent states, X

(m)
t , the

regime parameters, Φ(m), and latent switching variable, St.
Computing posterior distributions for SSSM is computation-
ally intractable [18]. To illustrate, in figure 2 we see that the
graph consists of M state space models that are marginally

independent. These models become conditionally dependent
when Yt is observed, as is the case in this graph. The re-

sult is that X
(m)
t is conditionally dependent on the value

of all of the other latent states and switching variables for
times 1 through T and regimes 1 through M [18]. Previous
approaches use approximate methods such as variational in-
ference [7] and a ‘merging of Gaussians’ [14, 18] to address
the inference problem. The variational inference approxima-
tion transforms the intractable Bayesian expectation prob-
lem into an optimization problem by minimizing the Kull-
back Leibler (KL) divergence between a simpler family of
approximating distributions and the unknown, intractable
posterior. The merging of Gaussians approach uses a single
Gaussian to represent the mixture of M Gaussians at each
time step thereby simplifying the computation with the cost
of being susceptible to local optima (see section 5.1).

While these methods have seen success in previous examples,
they cannot be applied to our domain. This is because they
allow the system to switch back and forth between regimes,
resulting in frequent regime changes that can hinder the in-
terpretability of the model output. This work takes a differ-
ent approach by imposing structure on the model to address
both inference and interpretability challenges. Further, as
the optimization procedures of the previous work are suscep-
tible to local optima, we rather use a Markov chain Monte
Carlo (MCMC) approach to approximate the posterior dis-
tribution of the latent parameters.

We make two assumptions, which arise from the need to
create human interpretable descriptions of complex system
behavior. Assumption 1: the system advances through a
series of regimes, each regime is active for a period, and then
switches to an entirely new regime, one that has not been
used before. Assumption 2: the regime remains active
for the maximum possible time for which it can be used to
describe the period.

To illustrate, without making these assumptions there areM
possible assignments of regimes for each time step, making
a total of MT combinations of possible assignments, which
is exponential in the number of time steps. Moreover, in
the worst case, the number of possible periods is bounded
by T with a switch at every time step. In contrast, under
our assumptions, there are only two possible assignments of
regimes for each time step (i.e., do we stay in the current
regime or do we progress to the next regime), making for
a total of 2M combinations of possible assignments, where
M is constant. The number of possible periods under this
methodology is bounded by M . We hypothesize that the
forced reduction in complexity of the fitted model would
significantly simplify the interpretability of the model for a
human.

4.2 Algorithm for Posterior Inference
Computing the posteriors in an SSSM corresponds to ap-

proximating the joint distributions overX
(m)
t and Φ(m) given

the observation vector Y. A well known problem with MCMC
inference in complex graphical models with hidden vari-
ables is that of identifiability [13]. Models are nonidenti-
fiable when two sets of parameters can explain the observed
data equally well. For example, in a simple Gaussian mix-
ture model with means µ0, µ1 and covariances Σ0,Σ1, the



marginal posterior distributions of the parameters are iden-
tical. A possible solution to the identifiability problem is to
add constraints (e.g. enforcing µ0 > µ1). However, defining
constraints in higher-dimensional domains is non-trivial.

Another solution for solving the identifiability problem is to
provide labels for part of the data. This is termed semi-
supervised learning and we incorporate this solution into
our model. In the context of the CW domain, we can label
observations as belonging to one regime or another. Let
St,t+1,...,t−1+K,t+K be a consecutive set of K state vari-
ables such that St and St+K have known value assignments
(regime m and regime m + 1 respectively). The values for
the state variables St+1,...,t−1+K are unknown. By Assump-
tion 1, the switch between regimes m and m + 1 occurs at
some Sl where t < l ≤ t + K. Therefore, the value of Sl

determines the values for all of the unknown states as St is
assigned to regime m for t < l and it is assigned to regime
m+ 1 for t ≥ l.

We provide a sketch of this process in Algorithm 1. Step 1
initializes the M supervised switch variables, one per regime.
The labeled switch variables are spaced uniformly in time
and are assigned to regimes in increasing order according to
Assumption 1. This uniform method for initialization can
be justified by Assumption 2, in that any set of regimes that
provides an interpretable model is sufficient. The number of
expected time steps in each period is K = T/M , and there
are K − 2 unlabeled switch variables between each pair of
switch variables assigned to regimes.

Step 2 performs MCMC sampling to approximate the poste-
rior of the model3. For the case when the value of the switch
variable is known, the posterior of X

(m)
t can be directly sam-

pled by following the structure of a state space model. In
the case where the switch variable is unknown, we have a
marginalization problem over the two possible values of St.
For the hidden Markov model (HMM) structure this can be
efficiently computed with the forward algorithm [20]. To
formulate the HMM forward algorithm, we use the obser-
vation probabilities from the individual state space models
in place of the emission probabilities of a standard HMM.
Here, πSi refers to the belief of the state of the switching
variable given the evidence up to that point in time.

Step 3 uses the regime specific parameters Φ(m) to make
a maximum likelihood assignment of an observation to a
regime using the Viterbi algorithm [20], thereby specifying
the value of St∀t ∈ [1 : T ].

Algorithm 1 is computed on an SSSM that implements As-
sumptions 1 and 2. Such a model is shown in figure 3. The
model depicts a subset of the time series with K time steps
from time t to time t+K. There are two supervised labels
at the boundaries of the subset with the variable St assigned
to regime m and variable St+K assigned to regime m + 1.
The unknown K−2 states in between are marginalized over
such that the regime specific posteriors can still be approxi-
mated. This model is repeated for the M−1 switches in the
data. The setup is flexible in that informative priors for the
model noise and transition matrices can be specified (and

3Implemented using Stan MC (http://mc-stan.org/)

Algorithm 1: Posterior inference algorithm

Input: M (number of regimes), Y (vector of observations
for T time steps).

1 Initialization: Label one datapoint per regime, leaving
T − (M + 1) unlabeled datapoints.

2 MCMC Inference: Draw samples for X
(m)
t ,Φ(m) from the

posterior distribution defined by the structured
probability model:

for Yt in Y do
if St = m is known then

sample from P (X
(m)
t ,Φ(m) | Xt−1, St = m,Yt)

else
marginalize over St. Sample from

m∑
i=m−1

πSiP (X
(i)
t ,Φ(i) | Xt−1, St = i, Yt)

3 Posterior Inference: Use the posterior for regime

parameters (Φ(m)) to run a Viterbi pass on the data Y to
make a maximum likelihood assignment of the value of St

to regime m (thereby learning the switching variables St).

Output: St (assignments to regimes), Φ(m) (regime
posterior distributions).

Figure 3: Updated graphical model showing the
semi-supervised switching labels, along with the
choice of only two chains between two semi-
supervised points. This representation is repeated
M − 1 times to describe the M − 1 switches between
the M regimes.



Figure 4: Histogram of the percent of correctly in-
ferred labels for the observed output. The struc-
tured sampling Algorithm 1 (a) learns the regime
labels more accurately than the randomly initialized
Gaussian merging algorithm (b).

related) as required by domain knowledge.

5. EMPIRICAL VALIDATION
We evaluate two aspects of Algorithm 1. First, we show
that it finds the true regime labels in a synthetic dataset.
Thereafter, we use data that were collected from Connected
Worlds to run a preliminary experiment that tests whether
the inferred periods are interpretable to human validators.

5.1 Evaluation on Synthetic Data
We generate synthetic data to test whether Algorithm 1
finds a reasonable representation of known switches in an
SSSM. Equation 2 describes an SSSM with two regimes
and a continuous state space. The transition parameters
and regime noise are determined according to the active
regime. This model is adapted from Ghahramani and Hin-
ton [7] which describes a state space that is disjoint at regime
switches; we rather chose to make the state space continu-
ous at the switch points as this more accurately mimics the
scenario that is present in CW. The prior probability of each
of the regimes is 0.5 (p1 = p2 = 0.5); the regime transition
probabilities are S1,1 = S2,2 = 0.95 and S1,2 = S2,1 = 0.054.
We used this model to generate 1000 time series, each with
200 observations.

X
(1)
t = 0.99 Xt−1 + w

(1)
t w

(1)
t ∼ N (0, 1)

X
(2)
t = 0.9 Xt−1 + w

(2)
t w

(2)
t ∼ N (0, 10)

Yt = StXt + vt vt ∼ N (0, 0.1)

(2)

We compare the Gaussian merging baseline that is com-
monly used in the literature [14] to Algorithm 1 with the
number of regimes initialized to 9. The accuracy of each ap-
proach is measured as the percentage of the correctly labeled
data points as belonging to either regime 1 or regime 2. On
average Algorithm 1 labels 89% of the data correctly, mate-
rially higher than the 66% average accuracy of the Gaussian
merging approach. Figure 4 shows a histogram of the cor-
rectly inferred switch points in the data according to Algo-
rithm 1 (top) and the baseline (bottom). The bi-modal and
long tailed distribution for the baseline approach demon-
strates its susceptibility to local optima.

4Sj,k denotes the probability of a switch from regime j to
regime k.

Figure 5: An example of a generated time series
from the SSSM model of Equation 2. The x axis
represents time, and the y axis shows the observa-
tions (the magnitudes of the signal are irrelevant
for this investigation). Regime labels are shown as
black and gray dots representing the two label op-
tions. True labels (top) are compared to the inferred
labels from Algorithm 1 (middle) and the Gaussian
merging (bottom).

Figure 5 shows an example of the generated time series
(top) and the associated switch points (bottom). The switch
points are shown according to the true model, the points
inferred by Algorithm 1 and the points inferred by the base-
line. Each period is represented by a sequence of black and
gray colored circles. As shown by the figure, the periods
inferred by Algorithm 1 and the baseline both overlap to
some extent with the true periods. However, there is sub-
stantially more noise in the inferred periods of the base-
line. Algorithm 1 learns the regime autoregressive parame-
ters φ1 = 0.97± 0.027 and φ2 = 0.88± 0.035, again showing
an effective recovery of the individual regime parameters.

The superior performance of Algorithm 1 can be directly
attributed to the switching behavior that is enforced by As-
sumptions 1 and 2, which was not assumed by the baseline
model. Although the model structure encourages the dis-
covery of switches in Algorithm 1 the uniformly spaced la-
bels should not be seen as a model advantage as no prior
knowledge of the actual switches is used in performing this
initialization step. Given that the proposed algorithm finds
a reasonable representation for the switches in a generated
dataset, we turn to the evaluation of the interpretability of
its output within the CW context.

5.2 Preliminary Validation of Interpretability
on Connected Worlds Data

Because the ultimate users of the output of Algorithm 1
will be teachers leading their students in a discussion of the
simulation behavior, we wanted to confirm that the inferred
switch points were interpretable by a human seeking to un-
derstand the “story” of the simulation. In order to do this,
we used a movie of the water flow (see figure 1 for one such
frame) and asked evaluators to select one of three possi-
ble switch points between every pair of consecutive periods.
Evaluators saw a composite of 1) the movie of the two pe-
riods; 2) a description of the dynamics of each of the two
periods and 3) a set of three possible switch points between
the periods. The evaluator’s task was to choose the switch
point that best matched the change in dynamics between
the two periods. One of the three switch points was that
inferred by Algorithm 1; the other two were random times
sampled uniformly from the beginning of the first period to



the end of the second period.5

The descriptions were generated from the inferred parame-
ters that are an output from Algorithm 1. In equation 1,
Φ(m) refers to the transition matrix for the mth regime. As
is discussed in section 4, the parameters from this matrix
describe the expected movement of water in the given pe-
riod. We threshold the values from this matrix to generate
a short text description for the water movement. One such
description could be: “Water is directed towards the desert
and plains. The wetlands and jungle are receiving little or
no water”.

Evaluators worked with five sessions, each of which included
5 to 10 periods of system dynamics. Selecting the correct
switch point is not a trivial task: it requires distinguish-
ing between changes in the system that indicate different
dynamic regimes and those that are noise within the same
dynamic regime. We see an evaluator’s ability to choose a
switch point based on the movie and a description of the
two contiguous periods as evidence that the inferred periods
are usable by a teacher who wants to guide students in con-
structing a causal description of their experience with the
simulation. Moreover, this can be seen as evidence that the
inferred regime parameters match inferred period bound-
aries, together presenting a coherent description for the wa-
ter movement for a short segment of the CW session.

Figure 6 shows the results of the validation using four eval-
uators with knowledge of the CW domain. The five sessions
are shown along the x-axis; the fraction of correctly selected
switch points is shown by the bin heights. The dashed line
represents a random baseline in which the selected switch
probability corresponds to 1

3
. Under the null hypothesis,

the performance of an evaluator would not be significantly
different than the random baseline. The results indicate
that the evaluators chose the switch point identified by Al-
gorithm 1 significantly more often than the random baseline
(p < 1 × 10−4), suggesting that the inferred switch points
were indeed interpretable to a large extent as meaningful
changes in the state of the system. The differences in inter-
pretability seen in figure 6 (e.g. session 4 was more difficult
to interpret than session 3) can provide further guidance
to us in how to support teachers and students in making
sense of their experiences in CW. For example, the sessions
with more complicated dynamics might need more periods
to fully capture the progression over time. Predefining the
number of periods for a given session is an aspect of this ap-
proach that needs addressing. A more detailed user study is
left for future work.

6. CONCLUSION AND FUTURE WORK
This paper has presented novel research into the simplifica-
tion of log files that are generated by complex participatory
immersive simulations. The log files were represented as a
time series that was decomposed with the long term goal of
producing periods that are useful for a teacher when leading
reflective discussions about students’ sessions. We have built
upon previous time series analysis tools to formulate a model
that automatically segments a time series into these salient

5Visualization available at https://s3.amazonaws.com/
essil-validation/index.html.

Figure 6: Expert validation of five different test
files from sessions with CW. The histogram shows
the fraction of correctly identified switches between
automatically identified periods with an expected
baseline accuracy of 1

3
.

periods. The efficacy of the algorithm was demonstrated on
a synthetic dataset where it outperformed previous work at
the task of assigning data to regimes. We used the algo-
rithm’s output to generate a short text description of the
dynamics in an inferred period. We find that evaluators are
independently able to validate the inferred changes between
the automatically generated periods. This preliminary study
demonstrates that it is possible to simplify a time series log
into periods of activity that are human interpretable.

Our focus now rests on designing assistive tools for teachers
that can facilitate their understanding of students’ inter-
actions in multi-participant immersive simulations. More-
over, our results suggest that the model should be capa-
ble of adapting the number of inferred regimes to the com-
plexity of a given session. Fox et al. [6] explore a Bayesian
non-parametric model which allows the data to dictate the
number of regimes that are inferred. The application of this
model to the CW data presents an attractive tool for remain-
ing agnostic about the number of regimes that are present
in a session. Another avenue for future research involves
exploring the trade-off that is made between the predictive
power of a model and the explanatory coherence that the
model achieves. Wu et al. [24] have suggested a method
for regularizing deep learning models to facilitate people’s
understanding of their predictions. This is an important
balance to consider and one that we intend to consider in
educational settings.
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P. Malcolm. Wallcology: Designing interaction
affordances for learner engagement in authentic
science inquiry. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,
pages 163–172. ACM, 2008.

[18] K. P. Murphy and S. Russell. Dynamic bayesian
networks: representation, inference and learning. 2002.

[19] P. Patel, E. Keogh, J. Lin, and S. Lonardi. Mining
motifs in massive time series databases. In Data
Mining, 2002. ICDM 2003. Proceedings. 2002 IEEE
International Conference on, pages 370–377. IEEE,
2002.

[20] R. H. Shumway and D. S. Stoffer. Time series analysis
and its applications. Studies In Informatics And
Control, 9(4):375–376, 2000.

[21] O. Smørdal, J. Slotta, T. Moher, M. Lui, and
A. Jornet. Hybrid spaces for science learning: New
demands and opportunities for research. In
International Conference of the Learning Sciences.
Sydney, Australia.

[22] N. Whiteley, C. Andrieu, and A. Doucet. Efficient
bayesian inference for switching state-space models
using discrete particle markov chain monte carlo
methods. arXiv preprint arXiv:1011.2437, 2010.

[23] U. Wilensky and M. Resnick. Thinking in levels: A
dynamic systems approach to making sense of the
world. Journal of Science Education and technology,
8(1):3–19, 1999.

[24] M. Wu, M. C. Hughes, S. Parbhoo, M. Zazzi, V. Roth,
and F. Doshi-Velez. Beyond sparsity: Tree
regularization of deep models for interpretability.
arXiv preprint arXiv:1711.06178, 2017.


